码迷,mamicode.com
首页 > 编程语言 > 详细

算法基础

时间:2018-09-30 14:56:47      阅读:171      评论:0      收藏:0      [点我收藏+]

标签:origin   ssd   有一个   --   strong   运行   rip   case   9.png   

一、什么是算法?

  •  算法(Algorithm):一个计算过程,解决问题的方法
  • 技术分享图片

     

一个算法应该具有以下七个重要的特征:

  • ①有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步骤之后终止;
  • ②确切性(Definiteness):算法的每一步骤必须有确切的定义;
  • ③输入项(Input):一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输     入是指算法本身定出了初始条件;
  • ④输出项(Output):一个算法有一个或多个输出,以反映对输入数据加工后的结果。没       有输出的算法是毫无意义的;
  • ⑤可行性(Effectiveness):算法中执行的任何计算步骤都是可以被分解为基本的可执行       的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性);
  • ⑥高效性(High efficiency):执行速度快,占用资源少;
  • ⑦健壮性(Robustness):对数据响应正确。

 

二、时间复杂度:参考链接

1、时间复杂度举例说明

时间复杂度:就是用来评估算法运行时间的一个式子(单位)。一般来说,时间复杂度高的算法比复杂度低的算法慢。

类比生活中的一些时间,估计时间:

技术分享图片

现在我们来说说下面这些代码的时间复杂度是多少呢?

技术分享图片
print(hello world)
print(hello python)
print(hrllo ssd )        #O(1)    大O,简而言之可以认为它的含义是“order of”(大约是)
#
for i in range(n):
    print(hello world)
    for j in range(n):
        print(hello world)   #O(n^2)

for i in range(n):
    for j in range(i):
        print(hrllo owd)   ##O(n^2)
n= 64
while n>1:
    print(n)     #O(log2n)或者O(logn)
    n = n//2

# while的分析思路:
#     假如n = 64的时候会输出:如下图
技术分享图片
# 这时候可以发现规律:
技术分享图片
技术分享图片

2、常见的算法时间复杂度(按照效率)由小到大依次为:

Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<O(n2logn)< Ο(n3)<…<Ο(2^n)<Ο(n!)

例如:

 
技术分享图片

由图中我们可以看出,当 n 趋于无穷大时, O(nlogn) 的性能显然要比 O(n^2) 来的高

一般来说,只要算法中不存在循环语句,其时间复杂度就是 O(1)

而时间复杂度又分为三种:

  • 最优时间复杂度 (Best-Case)
  • 平均时间复杂度 (Average-Case)
  • 最差时间复杂度 (Worst-Case)

最差时间复杂度的分析给了一个在最坏情况下的时间复杂度情况,这往往比平均时间复杂度好计算,而最优时间复杂度一般没什么用,因为没人会拿一些特殊情况去评判这个算法的好坏。

3、如何一眼判断时间复杂度?

  • 循环减半的过程-》O(logn)
  • 几次循环就是n的几次方的复杂度

三、空间复杂度

空间复杂度:用来评估算法内存占用大小的一个式子

 四、对于递归的简单复习

1、递归最大的两个特点:

  • 调用自身
  • 结束条件

2、做个小练习来判断一下下面那些函数是递归函数?

技术分享图片技术分享图片

技术分享图片技术分享图片

3、递归练习1

技术分享图片

代码实现

技术分享图片
def fun(n):
    if n>0:
      print("抱着",end="")
      fun(n-1)
      print("的我",end="")
    else:
      print("我的小鲤鱼",end="")
fun(4)
技术分享图片

递归练习2:汉诺塔问题

解决思路:

假设有n个盘子:

  • 1.把n-1个圆盘从A经过C移动到B
  • 2.把第n个圆盘从A移动到C
  • 3.把n-1个小圆盘从B经过A移动到C

技术分享图片

技术分享图片

技术分享图片

技术分享图片

 代码实现:

技术分享图片
def func(n,a,b,c):
    if n==1:
        print(a,-->,c)
    else:
        func(n-1,a,c,b)  #将n-1个盘子从a经过c移动到b
        print(a,-->,c)  #将剩余的最后一个盘子从a移动到c
        func(n-1,b,a,c)  #将n-1个盘子从b经过a移动到c
n = int(input(请输入汉诺塔的层数:))
func(n,柱子A,柱子B,柱子C)
技术分享图片

 总结:汉诺塔移动次数的递推式:h(x)=2h(x-1)+1

 出自:http://www.cnblogs.com/haiyan123/p/8394931.html

算法基础

标签:origin   ssd   有一个   --   strong   运行   rip   case   9.png   

原文地址:https://www.cnblogs.com/caodneg7/p/9729124.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!