码迷,mamicode.com
首页 > 数据库 > 详细

解决数据库高并发访问瓶颈问题

时间:2018-10-01 01:13:20      阅读:288      评论:0      收藏:0      [点我收藏+]

标签:csdn   个数   均衡   引擎   size   读取   扩展   大量   async   

一、缓存式的Web应用程序架构:

  在Web层和db层之间加一层cache层,主要目的:减少数据库读取负担,提高数据读取速度。cache存取的媒介是内存,可以考虑采用分布式的cache层,这样更容易破除内存容量的限制,同时增加了灵活性。

 

二、实现MySQL数据库异步查询实现:

  通常情况下在PHP中MySQL查询是串行的,如果能实现MySQL查询的异步化,就能实现多条SQL语句同时执行,这样就能大大地缩短MySQL查询的耗时,提高数据库查询的效率。目前MySQL的异步查询只在MySQLi扩展提供,查询方法分别是:

  1、使用MYSQLI_ASYNC模式执行mysqli::query

  2、获取异步查询结果:mysqli::reap_async_query

  使用mysql异步查询,需要使用mysqlnd作为PHP的MySQL数据库驱动。

  使用MySQL异步查询,因为需要给所有查询都创建一个新的连接,而MySQL服务端会为每个连接创建一个单独的线程进行处理,如果创建的线程过多,则会造成线程切换引起系统负载过高。Swoole中的异步MySQL其原理是通过MYSQLI_ASYNC模式查询,然后获取mysql连接的socket,加入到epoll事件循环中,当数据库返回结果时会回调指定函数,这个过程是完全异步非阻塞的。

 

三、MySQL主从读写分离:

  当数据库的写压力增加,cache层(如Memcached)只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负。使用主从复制技术(master-slave模式)来达到读写分离,以提高读写性能和读库的可扩展性。读写分离就是只在主服务器上写,只在从服务器上读,基本原理是让主数据库处理事务性查询,而从数据库处理select查询,数据库复制被用于把事务性查询(增删改)导致的改变更新同步到集群中的从数据库。

MySQL读写分离提升系统性能:

  1、主从只负责各自的读和写,极大程度缓解X锁和S锁争用。

  2、slave可以配置MyISAM引擎,提升查询性能以及节约系统开销。

  3、master直接写是并发的,slave通过主库发送来的binlog恢复数据是异步的。

  4、slave可以单独设置一些参数来提升其读的性能。

  5、增加冗余,提高可用性。

实现主从分离可以使用MySQL中间件如:Atlas

 

四、分表分库:

  在cache层的高速缓存,MySQL的主从复制,读写分离的基础上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。采用Master-Slave复制模式的MySQL架构,只能对数据库的读进行扩展,而对数据的写操作还是集中在Master上。这时需要对数据库的吞吐能力进一步地扩展,以满足高并发访问与海量数据存储的需求。

  对于访问极为频繁且数据量巨大的单表来说,首先要做的是减少单表的记录条数,以便减少数据查询所需的时间,提高数据库的吞吐,这就是所谓的分表【水平拆分】。在分表之前,首先需要选择适当的分表策略,使得数据能够较为均衡地分布到多张表中,并且不影响正常的查询。

  分表能够解决单表数据量过大带来的查询效率下降的问题,但是却无法给数据库的并发处理能力带来质的提升。面对高并发的读写访问,当数据库master服务器无法承载写操作压力时,不管如何扩展Slave服务器都是没有意义的,对数据库进行拆分,从而提高数据库写入能力,即分库【垂直拆分】

分库分表的理由策略如下:

  1、中间变量=user_id % ( 库数量 * 每个库的表数量 )

  2、库=取整(中间变量 / 每个库的表数量)

  3、表=中间变量 % 每个库的表数量

  数据库经过业务拆分及分库分表,虽然查询性能和并发处理能力提高了。但是原本跨表的事务上升为分布式事务;由于记录被切分到不同的库和不同的表中,难以进行多表关联查询,并且不能不指定路由字段对数据进行查询。且分库分表后需要进一步对系统进行扩容(路由策略变更)将变得非常不方便,需要重新进行数据迁移。

 

参考:

  https://blog.csdn.net/u010832551/article/details/77836681

解决数据库高并发访问瓶颈问题

标签:csdn   个数   均衡   引擎   size   读取   扩展   大量   async   

原文地址:https://www.cnblogs.com/mengchunchen/p/9733770.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!