码迷,mamicode.com
首页 > 编程语言 > 详细

NUMPY数组及处理:效率对比

时间:2018-10-02 22:14:36      阅读:227      评论:0      收藏:0      [点我收藏+]

标签:array   new   print   app   port   \n   datetime   bsp   sum   

用数组处理:

def Sum(n):          #定义一个函数(注意:格式对齐,否则会出错)
    a=list(range(n))
    b=list(range(0,50*n,5))
    c=[]
    for i in range(len(a)):
        c.append(a[i]**2+b[i]**3)
    return c
print(Sum(20))

 执行结果:

技术分享图片

 

 

用numpy执行:

import numpy as py
def pySum(n):
    a=py.array(range(n))
    b=py.array(range(0,50*n,n))
    c=[]
    for i in range(len(a)):
        c.append(a[i]**2+b[i]**3)
    return c
print(pySum(20))

 执行结果:

技术分享图片

 

 

import datetime
def new4():
    now1=datetime.datetime.now()
    Sum(30000)
    now2=datetime.datetime.now()
    pySum(30000)
    now3=datetime.datetime.now()
    print("sum执行时间(30W数据):" , now2-now1,"\npysum数组执行时间(30W数据):" , now3-now2)
new4()

 执行结果:

技术分享图片

很显然 用numpy的函数执行,速度会更快一些

 

NUMPY数组及处理:效率对比

标签:array   new   print   app   port   \n   datetime   bsp   sum   

原文地址:https://www.cnblogs.com/sunyubin/p/9737737.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!