标签:很多 字符串类型 block file 视频 完全 单表查询 内存 不同
MongoDB属于内存型数据库,在需要读性能要求很高的项目中有着比较不错的表现。
可做前段缓存服务器、缓冲数据存储区,同样也可以作为应用系统的存储服务器,例如微博、论坛等应用系统,也可以作为图片存储服务器(分布式);
在数据写方面,Mongo也支持比较高的写速率(当然这取决于硬件设备)。这比一般使用硬盘存储介质的关系数据库的存储效率要高很多。
但是,非关系数据库会造成大量冗余数据,如果前期的系统设计很粗糙,后期的数据维护将会相当困难。
MongoDB[2] 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
*面向集合存储,易存储对象类型的数据。*模式自由。*支持动态查询。*支持完全索引,包含内部对象。*支持查询。*支持复制和故障恢复。*使用高效的二进制数据存储,包括大型对象(如视频等)。*自动处理碎片,以支持云计算层次的扩展性。*支持RUBY,PYTHON,JAVA,C ,PHP,C#等多种语言。*文件存储格式为BSON(一种JSON的扩展)。*可通过网络访问。
1)网站实时数据处理。它非常适合实时的插入、更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。2)缓存。由于性能很高,它适合作为信息基础设施的缓存层。在系统重启之后,由它搭建的持久化缓存层可以避免下层的数据源过载。3)高伸缩性的场景。非常适合由数十或数百台服务器组成的数据库,它的路线图中已经包含对MapReduce引擎的内置支持。
1)要求高度事务性的系统。2)传统的商业智能应用。3)复杂的跨文档(表)级联查询。
● 网站数据:Mongo 非常适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。● 缓存:由于性能很高,Mongo 也适合作为信息基础设施的缓存层。在系统重启之后,由Mongo 搭建的持久化缓存层可以避免下层的数据源过载。● 大尺寸、低价值的数据:使用传统的关系型数据库存储一些数据时可能会比较昂贵,在此之前,很多时候程序员往往会选择传统的文件进行存储。● 高伸缩性的场景:Mongo 非常适合由数十或数百台服务器组成的数据库,Mongo 的路线图中已经包含对MapReduce 引擎的内置支持。● 用于对象及JSON 数据的存储:Mongo 的BSON 数据格式非常适合文档化格式的存储及查询。
● 高度事务性的系统:例如,银行或会计系统。传统的关系型数据库目前还是更适用于需要大量原子性复杂事务的应用程序。● 传统的商业智能应用:针对特定问题的BI 数据库会产生高度优化的查询方式。对于此类应用,数据仓库可能是更合适的选择。● 需要SQL 的问题。
标签:很多 字符串类型 block file 视频 完全 单表查询 内存 不同
原文地址:https://www.cnblogs.com/wuyepeng/p/9744993.html