码迷,mamicode.com
首页 > 编程语言 > 详细

红黑树的实现——c++

时间:2018-10-08 19:28:46      阅读:146      评论:0      收藏:0      [点我收藏+]

标签:isp   span   close   html   const   max   pen   算法   info   

红黑树介绍参考上一篇。

 

1. 基本定义

enum RBTColor{RED, BLACK};

template <class T>
class RBTNode{
    public:
        RBTColor color;    // 颜色
        T key;            // 关键字(键值)
        RBTNode *left;    // 左孩子
        RBTNode *right;    // 右孩子
        RBTNode *parent; // 父结点

        RBTNode(T value, RBTColor c, RBTNode *p, RBTNode *l, RBTNode *r):
            key(value),color(c),parent(),left(l),right(r) {}
};

template <class T>
class RBTree {
    private:
        RBTNode<T> *mRoot;    // 根结点

    public:
        RBTree();
        ~RBTree();

        // 前序遍历"红黑树"
        void preOrder();
        // 中序遍历"红黑树"
        void inOrder();
        // 后序遍历"红黑树"
        void postOrder();

        // (递归实现)查找"红黑树"中键值为key的节点
        RBTNode<T>* search(T key);
        // (非递归实现)查找"红黑树"中键值为key的节点
        RBTNode<T>* iterativeSearch(T key);

        // 查找最小结点:返回最小结点的键值。
        T minimum();
        // 查找最大结点:返回最大结点的键值。
        T maximum();

        // 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
        RBTNode<T>* successor(RBTNode<T> *x);
        // 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
        RBTNode<T>* predecessor(RBTNode<T> *x);

        // 将结点(key为节点键值)插入到红黑树中
        void insert(T key);

        // 删除结点(key为节点键值)
        void remove(T key);

        // 销毁红黑树
        void destroy();

        // 打印红黑树
        void print();
    private:
        // 前序遍历"红黑树"
        void preOrder(RBTNode<T>* tree) const;
        // 中序遍历"红黑树"
        void inOrder(RBTNode<T>* tree) const;
        // 后序遍历"红黑树"
        void postOrder(RBTNode<T>* tree) const;

        // (递归实现)查找"红黑树x"中键值为key的节点
        RBTNode<T>* search(RBTNode<T>* x, T key) const;
        // (非递归实现)查找"红黑树x"中键值为key的节点
        RBTNode<T>* iterativeSearch(RBTNode<T>* x, T key) const;

        // 查找最小结点:返回tree为根结点的红黑树的最小结点。
        RBTNode<T>* minimum(RBTNode<T>* tree);
        // 查找最大结点:返回tree为根结点的红黑树的最大结点。
        RBTNode<T>* maximum(RBTNode<T>* tree);

        // 左旋
        void leftRotate(RBTNode<T>* &root, RBTNode<T>* x);
        // 右旋
        void rightRotate(RBTNode<T>* &root, RBTNode<T>* y);
        // 插入函数
        void insert(RBTNode<T>* &root, RBTNode<T>* node);
        // 插入修正函数
        void insertFixUp(RBTNode<T>* &root, RBTNode<T>* node);
        // 删除函数
        void remove(RBTNode<T>* &root, RBTNode<T> *node);
        // 删除修正函数
        void removeFixUp(RBTNode<T>* &root, RBTNode<T> *node, RBTNode<T> *parent);

        // 销毁红黑树
        void destroy(RBTNode<T>* &tree);

        // 打印红黑树
        void print(RBTNode<T>* tree, T key, int direction);

#define rb_parent(r)   ((r)->parent)
#define rb_color(r) ((r)->color)
#define rb_is_red(r)   ((r)->color==RED)
#define rb_is_black(r)  ((r)->color==BLACK)
#define rb_set_black(r)  do { (r)->color = BLACK; } while (0)
#define rb_set_red(r)  do { (r)->color = RED; } while (0)
#define rb_set_parent(r,p)  do { (r)->parent = (p); } while (0)
#define rb_set_color(r,c)  do { (r)->color = (c); } while (0)
};

RBTNode是红黑树的节点类,而RBTree对应是红黑树的操作实现类。在RBTree中包含了根节点mRoot和红黑树的相关API。
注意:(01) 在实现红黑树API的过程中,我重载了许多函数。重载的原因,一是因为有的API是内部接口,有的是外部接口;二是为了让结构更加清晰。
          (02) 由于C++的实现是在上一篇介绍的"C语言"实现基础上移植而来,在该代码中,保留了一些C语言的特性;例如(宏定义)。

 

2. 左旋

技术分享图片

对x进行左旋,意味着"将x变成一个左节点"。

/* 
 * 对红黑树的节点(x)进行左旋转
 *
 * 左旋示意图(对节点x进行左旋):
 *      px                              px
 *     /                               /
 *    x                               y                
 *   /  \      --(左旋)-->           / \                #
 *  lx   y                          x  ry     
 *     /   \                       /   *    ly   ry                     lx  ly  
 *
 *
 */
template <class T>
void RBTree<T>::leftRotate(RBTNode<T>* &root, RBTNode<T>* x)
{
    // 设置x的右孩子为y
    RBTNode<T> *y = x->right;

    // 将 “y的左孩子” 设为 “x的右孩子”;
    // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
    x->right = y->left;
    if (y->left != NULL)
        y->left->parent = x;

    // 将 “x的父亲” 设为 “y的父亲”
    y->parent = x->parent;

    if (x->parent == NULL)
    {
        root = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
    }
    else
    {
        if (x->parent->left == x)
            x->parent->left = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
        else
            x->parent->right = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
    }
    
    // 将 “x” 设为 “y的左孩子”
    y->left = x;
    // 将 “x的父节点” 设为 “y”
    x->parent = y;
}

 

3. 右旋

技术分享图片

对y进行左旋,意味着"将y变成一个右节点"。

/* 
 * 对红黑树的节点(y)进行右旋转
 *
 * 右旋示意图(对节点y进行左旋):
 *            py                               py
 *           /                                /
 *          y                                x                  
 *         /  \      --(右旋)-->            /  \                     #
 *        x   ry                           lx   y  
 *       / \                                   / \                   #
 *      lx  rx                                rx  ry
 * 
 */
template <class T>
void RBTree<T>::rightRotate(RBTNode<T>* &root, RBTNode<T>* y)
{
    // 设置x是当前节点的左孩子。
    RBTNode<T> *x = y->left;

    // 将 “x的右孩子” 设为 “y的左孩子”;
    // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
    y->left = x->right;
    if (x->right != NULL)
        x->right->parent = y;

    // 将 “y的父亲” 设为 “x的父亲”
    x->parent = y->parent;

    if (y->parent == NULL) 
    {
        root = x;            // 如果 “y的父亲” 是空节点,则将x设为根节点
    }
    else
    {
        if (y == y->parent->right)
            y->parent->right = x;    // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
        else
            y->parent->left = x;    // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
    }

    // 将 “y” 设为 “x的右孩子”
    x->right = y;

    // 将 “y的父节点” 设为 “x”
    y->parent = x;
}

 

4. 添加

/* 
 * 将结点插入到红黑树中
 *
 * 参数说明:
 *     root 红黑树的根结点
 *     node 插入的结点        // 对应《算法导论》中的node
 */
template <class T>
void RBTree<T>::insert(RBTNode<T>* &root, RBTNode<T>* node)
{
    RBTNode<T> *y = NULL;
    RBTNode<T> *x = root;

    // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
    while (x != NULL)
    {
        y = x;
        if (node->key < x->key)
            x = x->left;
        else
            x = x->right;
    }

    node->parent = y;
    if (y!=NULL)
    {
        if (node->key < y->key)
            y->left = node;
        else
            y->right = node;
    }
    else
        root = node;

    // 2. 设置节点的颜色为红色
    node->color = RED;

    // 3. 将它重新修正为一颗二叉查找树
    insertFixUp(root, node);
}

/* 
 * 将结点(key为节点键值)插入到红黑树中
 *
 * 参数说明:
 *     tree 红黑树的根结点
 *     key 插入结点的键值
 */
template <class T>
void RBTree<T>::insert(T key)
{
    RBTNode<T> *z=NULL;

    // 如果新建结点失败,则返回。
    if ((z=new RBTNode<T>(key,BLACK,NULL,NULL,NULL)) == NULL)
        return ;

    insert(mRoot, z);
}

内部接口 -- insert(root, node)的作用是将"node"节点插入到红黑树中。其中,root是根,node是被插入节点。
外部接口 -- insert(key)的作用是将"key"添加到红黑树中。

添加修正操作的实现代码

技术分享图片
/*
 * 红黑树插入修正函数
 *
 * 在向红黑树中插入节点之后(失去平衡),再调用该函数;
 * 目的是将它重新塑造成一颗红黑树。
 *
 * 参数说明:
 *     root 红黑树的根
 *     node 插入的结点        // 对应《算法导论》中的z
 */
template <class T>
void RBTree<T>::insertFixUp(RBTNode<T>* &root, RBTNode<T>* node)
{
    RBTNode<T> *parent, *gparent;

    // 若“父节点存在,并且父节点的颜色是红色”
    while ((parent = rb_parent(node)) && rb_is_red(parent))
    {
        gparent = rb_parent(parent);

        //若“父节点”是“祖父节点的左孩子”
        if (parent == gparent->left)
        {
            // Case 1条件:叔叔节点是红色
            {
                RBTNode<T> *uncle = gparent->right;
                if (uncle && rb_is_red(uncle))
                {
                    rb_set_black(uncle);
                    rb_set_black(parent);
                    rb_set_red(gparent);
                    node = gparent;
                    continue;
                }
            }

            // Case 2条件:叔叔是黑色,且当前节点是右孩子
            if (parent->right == node)
            {
                RBTNode<T> *tmp;
                leftRotate(root, parent);
                tmp = parent;
                parent = node;
                node = tmp;
            }

            // Case 3条件:叔叔是黑色,且当前节点是左孩子。
            rb_set_black(parent);
            rb_set_red(gparent);
            rightRotate(root, gparent);
        } 
        else//若“z的父节点”是“z的祖父节点的右孩子”
        {
            // Case 1条件:叔叔节点是红色
            {
                RBTNode<T> *uncle = gparent->left;
                if (uncle && rb_is_red(uncle))
                {
                    rb_set_black(uncle);
                    rb_set_black(parent);
                    rb_set_red(gparent);
                    node = gparent;
                    continue;
                }
            }

            // Case 2条件:叔叔是黑色,且当前节点是左孩子
            if (parent->left == node)
            {
                RBTNode<T> *tmp;
                rightRotate(root, parent);
                tmp = parent;
                parent = node;
                node = tmp;
            }

            // Case 3条件:叔叔是黑色,且当前节点是右孩子。
            rb_set_black(parent);
            rb_set_red(gparent);
            leftRotate(root, gparent);
        }
    }

    // 将根节点设为黑色
    rb_set_black(root);
}
View Code

insertFixUp(root, node)的作用是对应"上面所讲的第三步"。它是一个内部接口。

 

5. 删除

技术分享图片
/* 
 * 删除结点(node),并返回被删除的结点
 *
 * 参数说明:
 *     root 红黑树的根结点
 *     node 删除的结点
 */
template <class T>
void RBTree<T>::remove(RBTNode<T>* &root, RBTNode<T> *node)
{
    RBTNode<T> *child, *parent;
    RBTColor color;

    // 被删除节点的"左右孩子都不为空"的情况。
    if ( (node->left!=NULL) && (node->right!=NULL) ) 
    {
        // 被删节点的后继节点。(称为"取代节点")
        // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
        RBTNode<T> *replace = node;

        // 获取后继节点
        replace = replace->right;
        while (replace->left != NULL)
            replace = replace->left;

        // "node节点"不是根节点(只有根节点不存在父节点)
        if (rb_parent(node))
        {
            if (rb_parent(node)->left == node)
                rb_parent(node)->left = replace;
            else
                rb_parent(node)->right = replace;
        } 
        else 
            // "node节点"是根节点,更新根节点。
            root = replace;

        // child是"取代节点"的右孩子,也是需要"调整的节点"。
        // "取代节点"肯定不存在左孩子!因为它是一个后继节点。
        child = replace->right;
        parent = rb_parent(replace);
        // 保存"取代节点"的颜色
        color = rb_color(replace);

        // "被删除节点"是"它的后继节点的父节点"
        if (parent == node)
        {
            parent = replace;
        } 
        else
        {
            // child不为空
            if (child)
                rb_set_parent(child, parent);
            parent->left = child;

            replace->right = node->right;
            rb_set_parent(node->right, replace);
        }

        replace->parent = node->parent;
        replace->color = node->color;
        replace->left = node->left;
        node->left->parent = replace;

        if (color == BLACK)
            removeFixUp(root, child, parent);

        delete node;
        return ;
    }

    if (node->left !=NULL)
        child = node->left;
    else 
        child = node->right;

    parent = node->parent;
    // 保存"取代节点"的颜色
    color = node->color;

    if (child)
        child->parent = parent;

    // "node节点"不是根节点
    if (parent)
    {
        if (parent->left == node)
            parent->left = child;
        else
            parent->right = child;
    }
    else
        root = child;

    if (color == BLACK)
        removeFixUp(root, child, parent);
    delete node;
}

/* 
 * 删除红黑树中键值为key的节点
 *
 * 参数说明:
 *     tree 红黑树的根结点
 */
template <class T>
void RBTree<T>::remove(T key)
{
    RBTNode<T> *node; 

    // 查找key对应的节点(node),找到的话就删除该节点
    if ((node = search(mRoot, key)) != NULL)
        remove(mRoot, node);
}
View Code

内部接口 -- remove(root, node)的作用是将"node"节点插入到红黑树中。其中,root是根,node是被插入节点。
外部接口 -- remove(key)删除红黑树中键值为key的节点。

删除修正操作的实现代码

技术分享图片
/*
 * 红黑树删除修正函数
 *
 * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
 * 目的是将它重新塑造成一颗红黑树。
 *
 * 参数说明:
 *     root 红黑树的根
 *     node 待修正的节点
 */
template <class T>
void RBTree<T>::removeFixUp(RBTNode<T>* &root, RBTNode<T> *node, RBTNode<T> *parent)
{
    RBTNode<T> *other;

    while ((!node || rb_is_black(node)) && node != root)
    {
        if (parent->left == node)
        {
            other = parent->right;
            if (rb_is_red(other))
            {
                // Case 1: x的兄弟w是红色的  
                rb_set_black(other);
                rb_set_red(parent);
                leftRotate(root, parent);
                other = parent->right;
            }
            if ((!other->left || rb_is_black(other->left)) &&
                (!other->right || rb_is_black(other->right)))
            {
                // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                rb_set_red(other);
                node = parent;
                parent = rb_parent(node);
            }
            else
            {
                if (!other->right || rb_is_black(other->right))
                {
                    // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                    rb_set_black(other->left);
                    rb_set_red(other);
                    rightRotate(root, other);
                    other = parent->right;
                }
                // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                rb_set_color(other, rb_color(parent));
                rb_set_black(parent);
                rb_set_black(other->right);
                leftRotate(root, parent);
                node = root;
                break;
            }
        }
        else
        {
            other = parent->left;
            if (rb_is_red(other))
            {
                // Case 1: x的兄弟w是红色的  
                rb_set_black(other);
                rb_set_red(parent);
                rightRotate(root, parent);
                other = parent->left;
            }
            if ((!other->left || rb_is_black(other->left)) &&
                (!other->right || rb_is_black(other->right)))
            {
                // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                rb_set_red(other);
                node = parent;
                parent = rb_parent(node);
            }
            else
            {
                if (!other->left || rb_is_black(other->left))
                {
                    // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                    rb_set_black(other->right);
                    rb_set_red(other);
                    leftRotate(root, other);
                    other = parent->left;
                }
                // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                rb_set_color(other, rb_color(parent));
                rb_set_black(parent);
                rb_set_black(other->left);
                rightRotate(root, parent);
                node = root;
                break;
            }
        }
    }
    if (node)
        rb_set_black(node);
}
View Code

removeFixup(root, node, parent)是对应"上面所讲的第三步"。它是一个内部接口。

 

 

本文来自http://www.cnblogs.com/skywang12345/p/3624291.html

 

红黑树的实现——c++

标签:isp   span   close   html   const   max   pen   算法   info   

原文地址:https://www.cnblogs.com/msymm/p/9756196.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!