码迷,mamicode.com
首页 > 编程语言 > 详细

3.2、spark集群运行应用之第三方jar的处理方式

时间:2018-10-10 21:56:51      阅读:214      评论:0      收藏:0      [点我收藏+]

标签:编写程序   bsp   array   col   scala   运行程序   filter   ons   因此   

在编写程序时,不可避免会用到第三方jar,有三种使用方式:

1、将运行程序需要的所有第三方 jar,分发到所有spark的/soft/spark/jars下

2、将第三方jar打散,和自己的源码打成一个jar包,如3.1中

3、在spark-submit命令中,通过--jars指定使用的第三方jar包

  在s102上提交,fastjson-1.2.47.jar 本地,myspark.jar本地,temptags.txt HDFS上

spark-submit --class a --jars fastjson-1.2.47.jar --master spark://s101:7077 myspark.jar temptags.txt

  spark-shell脚本也用到spark-submit,因此也可以通过spark-shell指定第三方 jar

spark-shell --master spark://s101:7077 --jars fastjson-1.2.47.jar  //该jar在本地
import java.util._
import scala.collection.JavaConversions._
import scala.collection.JavaConverters._
import com.alibaba.fastjson._
def pp(line: String)={  //解析方法
    val list = new ArrayList[String]

    val jsonObject = JSON.parseObject(line)
    val extInfoList = jsonObject.getJSONArray("extInfoList")

    if (extInfoList != null && extInfoList.size != 0) {
        for (o <- extInfoList) {
            val jo = o.asInstanceOf[JSONObject]
            if (jo.get("title") == "contentTags") {
                val values = jo.getJSONArray("values")
                for (value <- values) {
                    list.add(value.toString)
                }
            }
        }
    }
    list
}
val rdd1 = sc.textFile("myspark/temptags.txt")
val rdd2 = rdd1.map(s => {val sp = s.split("\t");val lst = pp(sp(1));(sp(0), lst)}).filter(_._2.size() > 0)
val rdd3 = rdd2.flatMapValues(_.asScala).map(t=>((t._1,t._2),1)).reduceByKey((a,b)=>a+b).groupBy(_._1._1).mapValues(_.map(t=>(t._1._2,t._2)))
val rdd4 = rdd3.mapValues(_.toList.sortBy(-_._2)).sortBy(-_._2(0)._2)
val rdd5 = rdd4.collect()
rdd5.foreach(println)

 

3.2、spark集群运行应用之第三方jar的处理方式

标签:编写程序   bsp   array   col   scala   运行程序   filter   ons   因此   

原文地址:https://www.cnblogs.com/lybpy/p/9768687.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!