码迷,mamicode.com
首页 > 编程语言 > 详细

Python全栈开发——进程与线程(2)

时间:2018-10-14 13:42:46      阅读:143      评论:0      收藏:0      [点我收藏+]

标签:multiple   []   AMM   asi   它的   star   例子   接口   全栈   

2.3 GIL(全局解释器锁)

Python中的线程是操作系统的原生线程,Python虚拟机使用一个全局解释器锁(Global Interpreter Lock)来互斥线程对Python虚拟机的使用。为了支持多线程机制,一个基本的要求就是需要实现不同线程对共享资源访问的互斥,所以引入了GIL。

GIL:在一个线程拥有了解释器的访问权之后,其他的所有线程都必须等待它释放解释器的访问权,即使这些线程的下一条指令并不会互相影响。 在调用任何Python C API之前,要先获得GIL

GIL缺点:多处理器退化为单处理器;优点:避免大量的加锁解锁操作

2.3.1 GIL的早期设计

Python支持多线程,而解决多线程之间数据完整性和状态同步的最简单方法自然就是加锁。 于是有了GIL这把超级大锁,而当越来越多的代码库开发者接受了这种设定后,他们开始大量依赖这种特性(即默认python内部对象是thread-safe的,无需在实现时考虑额外的内存锁和同步操作)。慢慢的这种实现方式被发现是蛋疼且低效的。但当大家试图去拆分和去除GIL的时候,发现大量库代码开发者已经重度依赖GIL而非常难以去除了。有多难?做个类比,像MySQL这样的“小项目”为了把Buffer Pool Mutex这把大锁拆分成各个小锁也花了从5.5到5.6再到5.7多个大版为期近5年的时间,并且仍在继续。MySQL这个背后有公司支持且有固定开发团队的产品走的如此艰难,那又更何况Python这样核心开发和代码贡献者高度社区化的团队呢?

2.3.2 GIL的影响

无论你启多少个线程,你有多少个cpu, Python在执行一个进程的时候会淡定的在同一时刻只允许一个线程运行。 所以,python是无法利用多核CPU实现多线程的。 这样,python对于计算密集型的任务开多线程的效率甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。

技术分享图片

任务:   IO密集型
              计算密集型                                     
对IO密集型的任务:Python的多线程是有意义的
可采用多线程+协程
对计算密集型的任务:Python的多线程就不推荐,Python就不适用了

2.3.3 解决方案

multiprocessing替代Thread multiprocessing库的出现很大程度上是为了弥补thread库因为GIL而低效的缺陷。它完整的复制了一套thread所提供的接口方便迁移。唯一的不同就是它使用了多进程而不是多线程。每个进程有自己的独立的GIL,因此也不会出现进程之间的GIL争抢。

当然multiprocessing也不是万能良药。它的引入会增加程序实现时线程间数据通讯和同步的困难。就拿计数器来举例子,如果我们要多个线程累加同一个变量,对于thread来说,申明一个global变量,用thread.Lock的context包裹住三行就搞定了。而multiprocessing由于进程之间无法看到对方的数据,只能通过在主线程申明一个Queue,put再get或者用share memory的方法。这个额外的实现成本使得本来就非常痛苦的多线程程序编码,变得更加痛苦了。

总结:因为GIL的存在,只有IO Bound场景下得多线程会得到较好的性能 - 如果对并行计算性能较高的程序可以考虑把核心部分也成C模块,或者索性用其他语言实现 - GIL在较长一段时间内将会继续存在,但是会不断对其进行改进。

2.4 同步锁 (Lock)

import time
import threading

def addNum():
    global num #在每个线程中都获取这个全局变量
    #num-=1

    temp=num
    time.sleep(0.1)
    num =temp-1  # 对此公共变量进行-1操作

num = 100  #设定一个共享变量

thread_list = []

for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)

for t in thread_list: #等待所有线程执行完毕
    t.join()

print(Result: , num)

通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁:

import threading

R=threading.Lock()

R.acquire()
‘‘‘
对公共数据的操作
‘‘‘
R.release()

2.5 死锁与递归锁

所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。

import threading
import time

mutexA = threading.Lock()
mutexB = threading.Lock()

class MyThread(threading.Thread):

    def __init__(self):
        threading.Thread.__init__(self)

    def run(self):
        self.fun1()
        self.fun2()

    def fun1(self):

        mutexA.acquire()  # 如果锁被占用,则阻塞在这里,等待锁的释放

        print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time()))

        mutexB.acquire()
        print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time()))
        mutexB.release()
        mutexA.release()


    def fun2(self):

        mutexB.acquire()
        print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time()))
        time.sleep(0.2)

        mutexA.acquire()
        print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time()))
        mutexA.release()

        mutexB.release()

if __name__ == "__main__":

    print("start---------------------------%s"%time.time())

    for i in range(0, 10):
        my_thread = MyThread()
        my_thread.start()

在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次acquire。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:
mutex = threading.RLock()

2.6 Event对象

线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就 会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行 event.isSet():返回event的状态值;

 

event.wait():如果 event.isSet()==False将阻塞线程;

event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;

event.clear():恢复event的状态值为False。

 

可以考虑一种应用场景(仅仅作为说明),例如,我们有多个线程从Redis队列中读取数据来处理,这些线程都要尝试去连接Redis的服务,一般情况下,如果Redis连接不成功,在各个线程的代码中,都会去尝试重新连接。如果我们想要在启动时确保Redis服务正常,才让那些工作线程去连接Redis服务器,那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作:主线程中会去尝试连接Redis服务,如果正常的话,触发事件,各工作线程会尝试连接Redis服务。

import threading
import time
import logging

logging.basicConfig(level=logging.DEBUG, format=(%(threadName)-10s) %(message)s,)

def worker(event):
    logging.debug(Waiting for redis ready...)
    event.wait()
    logging.debug(redis ready, and connect to redis server and do some work [%s], time.ctime())
    time.sleep(1)

def main():
    readis_ready = threading.Event()
    t1 = threading.Thread(target=worker, args=(readis_ready,), name=t1)
    t1.start()

    t2 = threading.Thread(target=worker, args=(readis_ready,), name=t2)
    t2.start()

    logging.debug(first of all, check redis server, make sure it is OK, and then trigger the redis ready event)
    time.sleep(3) # simulate the check progress
    readis_ready.set()

if __name__=="__main__":
    main()

 

threading.Event的wait方法还接受一个超时参数,默认情况下如果事件一致没有发生,wait方法会一直阻塞下去,而加入这个超时参数之后,如果阻塞时间超过这个参数设定的值之后,wait方法会返回。对应于上面的应用场景,如果Redis服务器一致没有启动,我们希望子线程能够打印一些日志来不断地提醒我们当前没有一个可以连接的Redis服务,我们就可以通过设置这个超时参数来达成这样的目的:

def worker(event):
    while not event.is_set():
        logging.debug(Waiting for redis ready...)
        event.wait(2)
    logging.debug(redis ready, and connect to redis server and do some work [%s], time.ctime())
    time.sleep(1)

这样,我们就可以在等待Redis服务启动的同时,看到工作线程里正在等待的情况

2.7 Semaphore(信号量)

Semaphore管理一个内置的计数器, 每当调用acquire()时内置计数器-1; 调用release() 时内置计数器+1; 计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):

import threading
import time

semaphore = threading.Semaphore(5)

def func():
    if semaphore.acquire():
        print (threading.currentThread().getName() +  get semaphore)
        time.sleep(2)
        semaphore.release()

for i in range(20):
  t1 = threading.Thread(target=func)
  t1.start()

应用:连接池

2.8 队列(queue)

queue is especially useful in threaded programming when information must be exchanged safely between multiple threads.

2.8.1 get与put方法

‘‘‘

创建一个“队列”对象

import queue
q = queue.Queue(maxsize = 10)
queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数
maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。

将一个值放入队列中
q.put(10)
调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;
第二个block为可选参数,默认为
Ture。如果队列当前为空且block为Ture,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为False,
put方法将引发Full异常。

将一个值从队列中取出
q.get()
调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且
block为True,get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。

‘‘‘

2.8.2  join与task_done方法

‘‘‘
join() 阻塞进程,直到所有任务完成,需要配合另一个方法task_done。

    def join(self):
     with self.all_tasks_done:
      while self.unfinished_tasks:
       self.all_tasks_done.wait()

task_done() 表示某个任务完成。每一条get语句后需要一条task_done。


import queue
q = queue.Queue(5)
q.put(10)
q.put(20)
print(q.get())
q.task_done()
print(q.get())
q.task_done()

q.join()

print("ending!")
‘‘‘

2.8.3 其他常用方法

‘‘‘

此包中的常用方法(q = Queue.Queue()):

q.qsize() 返回队列的大小
q.empty() 如果队列为空,返回True,反之False
q.full() 如果队列满了,返回True,反之False
q.full 与 maxsize 大小对应
q.get([block[, timeout]]) 获取队列,timeout等待时间
q.get_nowait() 相当q.get(False)非阻塞 
q.put(item) 写入队列,timeout等待时间
q.put_nowait(item) 相当q.put(item, False)
q.task_done() 在完成一项工作之后,q.task_done() 函数向任务已经完成的队列发送一个信号
q.join() 实际上意味着等到队列为空,再执行别的操作

‘‘‘

2.8.4 其他模式

‘‘‘

Python Queue模块有三种队列及构造函数: 

1、Python Queue模块的FIFO队列先进先出。  class queue.Queue(maxsize) 
2、LIFO类似于堆,即先进后出。           class queue.LifoQueue(maxsize) 
3、还有一种是优先级队列级别越低越先出来。 class queue.PriorityQueue(maxsize) 


import queue

#先进后出

q=queue.LifoQueue()

q.put(34)
q.put(56)
q.put(12)

#优先级
q=queue.PriorityQueue()
q.put([5,100])
q.put([7,200])
q.put([3,"hello"])
q.put([4,{"name":"alex"}])

while 1:
  data=q.get()
  print(data)

‘‘‘

2.8.5 生产者消费者模型

在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。

生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

这就像,在餐厅,厨师做好菜,不需要直接和客户交流,而是交给前台,而客户去饭菜也不需要不找厨师,直接去前台领取即可,这也是一个结耦的过程。

import time,random
import queue,threading

q = queue.Queue()

def Producer(name):
  count = 0
  while count <10:
    print("making........")
    time.sleep(random.randrange(3))
    q.put(count)
    print(Producer %s has produced %s baozi.. %(name, count))
    count +=1
    #q.task_done()
    #q.join()
    print("ok......")
def Consumer(name):
  count = 0
  while count <10:
    time.sleep(random.randrange(4))
    if not q.empty():
        data = q.get()
        #q.task_done()
        #q.join()
        print(data)
        print(\033[32;1mConsumer %s has eat %s baozi...\033[0m %(name, data))
    else:
        print("-----no baozi anymore----")
    count +=1

p1 = threading.Thread(target=Producer, args=(A,))
c1 = threading.Thread(target=Consumer, args=(B,))
# c2 = threading.Thread(target=Consumer, args=(‘C‘,))
# c3 = threading.Thread(target=Consumer, args=(‘D‘,))
p1.start()
c1.start()
# c2.start()
# c3.start()

 

Python全栈开发——进程与线程(2)

标签:multiple   []   AMM   asi   它的   star   例子   接口   全栈   

原文地址:https://www.cnblogs.com/lujiacheng-Python/p/9785769.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!