聚类分析(Cluster Analysis)是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法,它是在没有先验知识的情况下,对样本按各自的特性来进行合理的分类。
聚类分析被应用于很多方面,在商业上,聚类分析被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征;在生物上,聚类分析被用来动植物分类和对基因进行分类,获取对种群固有结构的认识;在因特网应用上,聚类分析被用来在网上进行文档归类来修复信息。
聚类分析有两种主要计算方法,分别是凝聚层次聚类(Agglomerative hierarchical method)和K均值聚类(K-Means)。
一、层次聚类层次聚类又称为系统聚类,首先要定义样本之间的距离关系,距离较近的归为一类,较远的则属于不同的类。可用于定义“距离”的统计量包括了欧氏距离(euclidean)、马氏距离(manhattan)、 两项距离(binary)、明氏距离(minkowski)。还包括相关系数和夹角余弦。
层次聚类首先将每个样本单独作为一类,然后将不同类之间距离最近的进行合并,合并后重新计算类间距离。这个过程一直持续到将所有样本归为一类为止。在计算类间距离时则有六种不同的方法,分别是最短距离法、最长距离法、类平均法、重心法、中间距离法、离差平方和法。
下面我们用
iris数据集来进行聚类分析,在R语言中所用到的函数为
hclust。首先提取iris数据中的4个数值变量,然后计算其欧氏距离矩阵。然后将矩阵绘制热图,从图中可以看到颜色越深表示样本间距离越近,大致上可以区分出三到四个区块,其样本之间比较接近。
然后使用hclust函数建立聚类模型,结果存在model1变量中,其中ward参数是将类间距离计算方法设置为离差平方和法。使用plot(model1)可以绘制出聚类树图。如果我们希望将类别设为3类,可以使用cutree函数提取每个样本所属的类别。
model1=hclust(dist.e,method=‘ward‘)
result=cutree(model1,k=3)
为了显示聚类的效果,我们可以结合多维标度和聚类的结果。先将数据用MDS进行降维,然后以不同的的形状表示原本的分类,用不同的颜色来表示聚类的结果。可以看到setose品种聚类很成功,但有一些virginica品种的花被错误和virginica品种聚类到一起。
mds=cmdscale(dist.e,k=2,eig=T)
x = mds$points[,1]
y = mds$points[,2]
library(ggplot2)
p=ggplot(data.frame(x,y),aes(x,y))
p+geom_point(size=3,alpha=0.8,
aes(colour=factor(result),
shape=iris$Species))
二、K均值聚类K均值聚类又称为动态聚类,它的计算方法较为简单,也不需要输入距离矩阵。首先要指定聚类的分类个数N,随机取N个样本作为初始类的中心,计算各样本与类中心的距离并进行归类,所有样本划分完成后重新计算类中心,重复这个过程直到类中心不再变化。
在R中使用
kmeans函数进行K均值聚类,centers参数用来设置分类个数,nstart参数用来设置取随机初始中心的次数,其默认值为1,但取较多的次数可以改善聚类效果。model2$cluster可以用来提取每个样本所属的类别。
model2=kmeans(data,centers=3,nstart=10)
使用K均值聚类时需要注意,只有在类的平均值被定义的情况下才能使用,还要求事先给出分类个数。一种方法是先用层次聚类以决定个数,再用K均值聚类加以改进。或者以
轮廓系数来判断分类个数。改善聚类的方法还包括对原始数据进行变换,如对数据进行降维后再实施聚类。
cluster扩展包中也有许多函数可用于聚类分析,如agnes函数可用于凝聚层次聚类,diana可用于划分层次聚类,pam可用于K均值聚类,fanny用于模糊聚类。