标签:net 学习 分辨率 传统 扩大 慢慢 一个 color 发展历程
mlp多层感知器层
inception module
上面两个观看孔径,尺寸不一样,可以抽取不同分辨率,不同尺度的邻域范围的信息作为特征,这样就可以观察到输入数据的不同层次,不同分辨率的特征
因为这个1*1完了之后,就是做完内积以后,就在那一个点上,它是每个通道那一个点上做完内积,把所有通道的内积加起来,之后非线性激活函数,这里的conv里面都包含relu。
1*1卷积所连接的相关性是最高的,因为卷积核扩大以后呢,3*3他在不同通道的位置,可能会变得不一样,相关性就会减弱
v2:
传统的神经网络训练的时候,每一层输入的分布都在变化,就是网络的这个不同输入的分布,在不同的迭代过程中,变化特别剧烈,总是稳定不下来,这样就没法收敛,只能使用比较小的学习率,让他慢慢变化
标签:net 学习 分辨率 传统 扩大 慢慢 一个 color 发展历程
原文地址:https://www.cnblogs.com/pacino12134/p/9791118.html