标签:最大 存在 最优 优化问题 ima 目标 其他 实现 之间
( 隔了一段时间再来总结,就像重新学习了一次似的,以后一定要及时总结。本编总结系当时研究算法时记录的一些内容,部分原创,部分源自网络)
一、 人工鱼的结构模型
人工鱼是真实鱼抽象化、虚拟化的一个实体,其中封装了自身数据和一系列行为,可以接受环境的刺激信息,做出相应的活动。其所在的环境由问题的解空间和其他人工鱼的状态,它在下一时刻的行为取决于自身的状态和环境的状态,并且它还通过自身的活动来影响环境,进而影响其他人工鱼的活动。
二、 人工鱼群算法的寻优原理
人工鱼群算法在寻优的过程中,可能会集结在几个局部最优解的周围,使人工鱼跳出局部最优解,实现全局寻优的因素主要有:
三、 人工鱼群算法实现的步骤
四、人工鱼群算法实现流程图
五、 各种参数对收敛性的影响
人工鱼群算法中,觅食行为奠定了算法收敛的基础;聚群行为增强了算法收敛的稳定性;追尾行为增强了算法收敛的快速性和全局性;其评价行为也对算法收敛的速度和稳定性提供了保障。
人工鱼群算法有5个基本参数:群规模N、人工鱼的视野Visual、步长Step、拥挤度因子δ、重复次数Trynumber。
1. 视野Visual:由于视野对算法中个行为都有较大影响,因此,它的变化对收敛性能影响也比较复杂。当视野范围较小时,人工鱼的觅食行为和随机行为比较突出;视野范围较大时,人工鱼的追尾行为和聚群行为将变得比较突出,相应的算法的复杂度也会有所上升。总的来说:视野越大,越容易使人工鱼发现全局最优解并收敛。
2. 步长Step:对于固定步长,随着步长的增加,收敛的速度得到了一定的加速,但在超过一定的范围后,有使得收敛速度减缓,步长过大时会出现震荡现象而大大影响收敛速度。采用随机步长的方式在一定程度上防止了震荡现象的发生,并使得该参数的敏感度大大降低了,但最快的收敛速度还是最优固定步长的收敛速度,所以,对于特定的优化问题,我们可以考虑采用合适的固定步长或者变尺度方法来提高收敛速度。
3. 群规模N:人工鱼的数目越多,跳出局部最优解的能力越强,同时,收敛的速度也越快。当然,付出的代价就是算法每次迭代的计算量也越大,因此,在使用过程中,满足稳定收敛的前提下,应当尽可能的减少个图数目。
4. 尝试次数Trynumber:尝试次数越多,人工鱼的觅食行为能力越强,收敛的效率也越高。在局部极值突出的情况下,应该适当的减少以增加人工鱼随机游动的概率,克服局部最优解。
5. 拥挤度因子δ:在求极大值问题中,δ=1/(αnmax),α∈(0,1]δ=1/(αnmax),α∈(0,1];在求极小值问题中,δ=αnmax,α∈(0,1]δ=αnmax,α∈(0,1]。其中α为极值接近水平, nmax为期望在该邻域内聚集的最大人工鱼数目。拥挤度因子与nf相结合,通过人工鱼是否执行追尾和聚群行为对优化结果产生影响。以极大值为例(极小值的情况正好与极大值相反),δ越大,表明允许的拥挤程度越小,人工鱼摆脱局部最优解的能力越强;但是收敛速度会有所减缓,这主要因为人工鱼在逼近最优解的同时,会因避免过分拥挤而随机走开或者受其他人工鱼的排斥作用,不能精确逼近极值点。可见,虽然δ的引入避免了人工鱼过度拥挤而陷入局部最优解,但是另一方面,该参数会使得位于极值点附件的人工鱼之间存在相互排斥的影响,而难以想极值点精确逼近。所以,对于某些局部极值不是很严重的具体问题,可以忽略拥挤的因素,从而在简化算法的同时也加快算法的收敛速度和提高结果的精确程度。
六、 人工鱼群算法的特点
标签:最大 存在 最优 优化问题 ima 目标 其他 实现 之间
原文地址:https://www.cnblogs.com/bo-liang/p/9797895.html