标签:tin The 概率 which com not cep argmax upd
使用神经网络识别手写数字:
import numpy
# scipy.special for the sigmoid function expit(),即S函数
import scipy.special
# library for plotting arrays
import matplotlib.pyplot
# ensure the plots are inside this notebook, not an external window
%matplotlib inline // 在notebook上绘图,而不是独立窗口
# neural network class definition
class neuralNetwork:
# initialise the neural network
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
# set number of nodes in each input, hidden, output layer
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
# link weight matrices, wih and who
# weights inside the arrays are w_i_j, where link is from node i to node j in the next layer
# w11 w21
# w12 w22 etc
# numpy.random.normal(loc,scale,size) loc:概率分布的均值;scale:概率分布的方差;size:输出的shape
self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))
# learning rate
self.lr = learningrate
# activation function is the sigmoid function
# 使用lambda创建的函数是没有名字的
self.activation_function = lambda x: scipy.special.expit(x)
pass
# train the neural network
def train(self, inputs_list, targets_list):
# convert inputs list to 2d array
inputs = numpy.array(inputs_list, ndmin=2).T
targets = numpy.array(targets_list, ndmin=2).T
# calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
# calculate the signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
# calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
# calculate the signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
# output layer error is the (target - actual)
output_errors = targets - final_outputs
# hidden layer error is the output_errors, split by weights, recombined at hidden nodes
hidden_errors = numpy.dot(self.who.T, output_errors)
# update the weights for the links between the hidden and output layers
self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
# update the weights for the links between the input and hidden layers
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
pass
# query the neural network
def query(self, inputs_list):
# convert inputs list to 2d array
inputs = numpy.array(inputs_list, ndmin=2).T
# calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
# calculate the signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
# calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
# calculate the signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
return final_outputs
# number of input, hidden and output nodes
# 选择784个输入节点是28*28的结果,即组成手写数字图像的像素个数
input_nodes = 784
# 选择使用100个隐藏层不是通过使用科学的方法得到的。通过选择使用比输入节点的数量小的值,强制网络尝试总结输入的主要特点。
# 但是,如果选择太少的隐藏层节点,会限制网络的能力,使网络难以找到足够的特征或模式。
# 同时,还要考虑到输出层节点数10。
# 这里应该强调一点。对于一个问题,应该选择多少个隐藏层节点,并不存在一个最佳方法。同时,我们也没有最佳方法选择需要几层隐藏层。
# 就目前而言,最好的办法是进行实验,直到找到适合你要解决的问题的一个数字。
hidden_nodes = 200
output_nodes = 10
# learning rate,需要多次尝试,0.2是最佳值
learning_rate = 0.1
# create instance of neural network
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
# load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", ‘r‘)
training_data_list = training_data_file.readlines()
training_data_file.close()
# train the neural network
# epochs is the number of times the training data set is used for training
# 就像调整学习率一样,需要使用几个不同的世代进行实验并绘图,以可视化这些效果。直觉告诉我们,所做的训练越多,所得到的的性能越好。
# 但太多的训练实际上会过犹不及,这是由于网络过度拟合训练数据。
# 在大约5或7个世代时,有一个甜蜜点。在此之后,性能会下降,这可能是过度拟合的效果。
# 性能在6个世代的情况下下降,这可能是运行中出了问题,导致网络在梯度下降过程中被卡在了一个局部的最小值中。
# 事实上,由于没有对每个数据点进行多次实验,无法减小随机过程的影响。
# 神经网络的学习过程其核心是随机过程,有时候工作得不错,有时候很糟。
# 另一个可能的原因是,在较大数目的世代情况下,学习率可能设置过高了。在更多世代的情况下,减小学习率确实能够得到更好的性能。
# 如果打算使用更长的时间(多个世代)探索梯度下降,那么可以采用较短的步长(学习率),总体上可以找到更好的路径。
# 要正确、科学地选择这些参数,必须为每个学习率和世代组合进行多次实验,尽量减少在梯度下降过程中随机性的影响。
# 还可尝试不同的隐藏层节点数量,不同的激活函数。
epochs = 5
for e in range(epochs):
# go through all records in the training data set
for record in training_data_list:
# split the record by the ‘,‘ commas
all_values = record.split(‘,‘)
# scale and shift the inputs
# 输入值需要避免0,输出值需要避免1
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# create the target output values (all 0.01, except the desired label which is 0.99)
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[int(all_values[0])] = 0.99
n.train(inputs, targets)
pass
pass
# load the mnist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", ‘r‘)
test_data_list = test_data_file.readlines()
test_data_file.close()
# test the neural network
# scorecard for how well the network performs, initially empty
scorecard = []
# go through all the records in the test data set
for record in test_data_list:
# split the record by the ‘,‘ commas
all_values = record.split(‘,‘)
# correct answer is first value
correct_label = int(all_values[0])
# scale and shift the inputs
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# query the network
outputs = n.query(inputs)
# the index of the highest value corresponds to the label
label = numpy.argmax(outputs)
# append correct or incorrect to list
if (label == correct_label):
# network‘s answer matches correct answer, add 1 to scorecard
scorecard.append(1)
else:
# network‘s answer doesn‘t match correct answer, add 0 to scorecard
scorecard.append(0)
pass
pass
# calculate the performance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
# performance = 0.9712
Python神经网络编程 第二章 使用Python进行DIY
标签:tin The 概率 which com not cep argmax upd
原文地址:https://www.cnblogs.com/paulonetwo/p/9876473.html