码迷,mamicode.com
首页 > 编程语言 > 详细

「知识学习&日常训练」莫队算法(一)(Codeforce Round #340 Div.2 E)

时间:2018-11-09 22:53:05      阅读:259      评论:0      收藏:0      [点我收藏+]

标签:知识   log   else   相同   +=   是什么   https   code   file   

题意

已知一个长度为\(n\)的整数数列\(a[1],a[2],…,a[n]\),给定查询参数\(l,r\),问\([l,r]\)内,有多少连续子段满足异或和等于\(k\)
也就是说,对于所有的\(x,y (l\le x\le y\le r)\),能够满足\(a[x]\oplus a[x+1]\oplus ...\oplus a[y]=k\)\((x,y)\)有多少组。

分析

对于这种离线区间的查询问题(不涉及对区间的更改),我们可以使用莫队算法解决。这类问题是什么类型?对于序列上的区间询问问题,如果从\([l, r]\)的答案能够\(O(1)\)扩展到\([l+1,r],[l,r?1],[l - 1, r],[l, r + 1]\)的答案,那么可以在\(O(n\sqrt n)\)的复杂度内求出所有询问的答案。
这题为什么可以?因为对于\(x\)\(y\)的区间异或和,我们可以用前缀异或和的\(x-1\)\(y\)相异或来解决。
接下来讲讲具体的实现:
(参考:https://blog.sengxian.com/algorithms/mo-s-algorithm
实现:离线后排序,顺序处理每个询问,暴力从上一个区间的答案转移到下一个区间答案。
排序方法:设定块的长度为\(S\),按照\((\lfloor\frac l S\rfloor, r)\)二元组从小到大排序。
复杂度分析:设序列长度为\(n\),询问个数为\(m\)。可以发现从\((l_1, r_1)\)转移到\((l_2, r_2)\)的代价为他们之间的曼哈顿距离。对于每一个询问序列中的每一个块(第一关键字相同),整个块内纵坐标最多变化\(n\)长度(纵坐标必然单调不减),对于每个询问,横坐标最多变化\(S\)。一共有\(\frac n S\)个块,相邻块之间转移的复杂度为\(O(n)\),所以复杂度为\(O(\frac {n^2} S + mS + \frac {n^2} S)\),不妨让\(n, m\)同阶,取\(S = \sqrt n\)??时可达到最优复杂度\(O(n\sqrt n)\)?。
这题的具体实现:我们记\(mp[x]\)为异或和为x的个数。转移区间的时候(不失一般性,考虑区间纯右移),每增加一个点\(r\),这个点对于答案的贡献是\(mp[x\oplus a[r]]\)(异或的性质),同时,它增加了\(mp[a[r]]\)的个数。每减少一个点同理。

代码

参考:https://blog.csdn.net/swust_lian/article/details/50615109

/* 
 * Filename: cfr340d2e.cpp
 * Date: 2018-11-09
 */

#include <bits/stdc++.h>

#define INF 0x3f3f3f3f
#define PB emplace_back
#define MP make_pair
#define fi first
#define se second
#define rep(i,a,b) for(repType i=(a); i<=(b); ++i)
#define per(i,a,b) for(repType i=(a); i>=(b); --i)
#define ZERO(x) memset(x, 0, sizeof(x))
#define MS(x,y) memset(x, y, sizeof(x))
#define ALL(x) (x).begin(), (x).end()

#define QUICKIO                      ios::sync_with_stdio(false);     cin.tie(0);                      cout.tie(0);
#define DEBUG(...) fprintf(stderr, __VA_ARGS__), fflush(stderr)

using namespace std;
using pi=pair<int,int>;
using repType=int;
using ll=long long;
using ld=long double;
using ull=unsigned long long;

const int MAXN=100005;
const int BLOCK=400;

struct Node
{
    ll l,r,id;
    Node(ll _l=0, ll _r=0, ll _id=0):
        l(_l), r(_r), id(_id) {}
    bool operator < (const Node& rhs) const
    {
        if(l/BLOCK!=rhs.l/BLOCK) return l/BLOCK<rhs.l/BLOCK;
        else return r<rhs.r;
    }
};
vector<Node> vec;

ll s[MAXN];
ll ans[MAXN], mp[MAXN*200];
ll n,m,k;
int
main()
{
    scanf("%lld%lld%lld", &n, &m, &k);
    s[0]=0;
    rep(i,1,n)
    {
        ll x; scanf("%lld", &x);
        s[i]=s[i-1]^x;
    }
    rep(i,1,m)
    {
        ll l,r;
        scanf("%lld%lld", &l, &r);
        vec.PB(l-1,r,i); // why l-1: xor(a[x]~a[y])=k <-> s[x-1]^s[y]=k
    }
    sort(ALL(vec));
    ZERO(mp);
    ZERO(ans);
    ll tmp=0;
    int l=vec[0].l, r=vec[0].r;
    rep(i,l,r)
    {
        tmp+=mp[s[i]^k];
        mp[s[i]]++;
    }

    ans[vec[0].id]=tmp;
    rep(i,1,m-1)
    {
        int L=vec[i].l,
            R=vec[i].r;
        while(l>L)
        {
            l--;
            tmp+=mp[s[l]^k];
            mp[s[l]]++; // mp: cnt of xor_sum = s[l]
        }
        while(l<L)
        {
            mp[s[l]]--;
            tmp-=mp[s[l]^k];
            l++;
        }
        while(r<R)
        {
            r++;
            tmp+=mp[s[r]^k];
            mp[s[r]]++;
        }
        while(r>R)
        {
            mp[s[r]]--;
            tmp-=mp[s[r]^k];
            r--;
        }
        ans[vec[i].id]=tmp;
    }
    rep(i,1,m) printf("%lld\n", ans[i]);
    return 0;
}

「知识学习&日常训练」莫队算法(一)(Codeforce Round #340 Div.2 E)

标签:知识   log   else   相同   +=   是什么   https   code   file   

原文地址:https://www.cnblogs.com/samhx/p/CFR340D2E_Mo-s-Algorithm_a.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!