标签:实现 == 算法 次数 3.3 mat 3.2 perm 输入
在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度。下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进行迭代(此方法由于循环较多,时间复杂度相对较高,但更严谨。就时间性而言,推荐使用“FCM算法的matlab程序”这个程序)。
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
iris_data.txt
5.1 3.5 1.4 0.2 4.9 3 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2 5 3.6 1.4 0.2 5.4 3.9 1.7 0.4 4.6 3.4 1.4 0.3 5 3.4 1.5 0.2 4.4 2.9 1.4 0.2 4.9 3.1 1.5 0.1 5.4 3.7 1.5 0.2 4.8 3.4 1.6 0.2 4.8 3 1.4 0.1 4.3 3 1.1 0.1 5.8 4 1.2 0.2 5.7 4.4 1.5 0.4 5.4 3.9 1.3 0.4 5.1 3.5 1.4 0.3 5.7 3.8 1.7 0.3 5.1 3.8 1.5 0.3 5.4 3.4 1.7 0.2 5.1 3.7 1.5 0.4 4.6 3.6 1 0.2 5.1 3.3 1.7 0.5 4.8 3.4 1.9 0.2 5 3 1.6 0.2 5 3.4 1.6 0.4 5.2 3.5 1.5 0.2 5.2 3.4 1.4 0.2 4.7 3.2 1.6 0.2 4.8 3.1 1.6 0.2 5.4 3.4 1.5 0.4 5.2 4.1 1.5 0.1 5.5 4.2 1.4 0.2 4.9 3.1 1.5 0.2 5 3.2 1.2 0.2 5.5 3.5 1.3 0.2 4.9 3.6 1.4 0.1 4.4 3 1.3 0.2 5.1 3.4 1.5 0.2 5 3.5 1.3 0.3 4.5 2.3 1.3 0.3 4.4 3.2 1.3 0.2 5 3.5 1.6 0.6 5.1 3.8 1.9 0.4 4.8 3 1.4 0.3 5.1 3.8 1.6 0.2 4.6 3.2 1.4 0.2 5.3 3.7 1.5 0.2 5 3.3 1.4 0.2 7 3.2 4.7 1.4 6.4 3.2 4.5 1.5 6.9 3.1 4.9 1.5 5.5 2.3 4 1.3 6.5 2.8 4.6 1.5 5.7 2.8 4.5 1.3 6.3 3.3 4.7 1.6 4.9 2.4 3.3 1 6.6 2.9 4.6 1.3 5.2 2.7 3.9 1.4 5 2 3.5 1 5.9 3 4.2 1.5 6 2.2 4 1 6.1 2.9 4.7 1.4 5.6 2.9 3.6 1.3 6.7 3.1 4.4 1.4 5.6 3 4.5 1.5 5.8 2.7 4.1 1 6.2 2.2 4.5 1.5 5.6 2.5 3.9 1.1 5.9 3.2 4.8 1.8 6.1 2.8 4 1.3 6.3 2.5 4.9 1.5 6.1 2.8 4.7 1.2 6.4 2.9 4.3 1.3 6.6 3 4.4 1.4 6.8 2.8 4.8 1.4 6.7 3 5 1.7 6 2.9 4.5 1.5 5.7 2.6 3.5 1 5.5 2.4 3.8 1.1 5.5 2.4 3.7 1 5.8 2.7 3.9 1.2 6 2.7 5.1 1.6 5.4 3 4.5 1.5 6 3.4 4.5 1.6 6.7 3.1 4.7 1.5 6.3 2.3 4.4 1.3 5.6 3 4.1 1.3 5.5 2.5 4 1.3 5.5 2.6 4.4 1.2 6.1 3 4.6 1.4 5.8 2.6 4 1.2 5 2.3 3.3 1 5.6 2.7 4.2 1.3 5.7 3 4.2 1.2 5.7 2.9 4.2 1.3 6.2 2.9 4.3 1.3 5.1 2.5 3 1.1 5.7 2.8 4.1 1.3 6.3 3.3 6 2.5 5.8 2.7 5.1 1.9 7.1 3 5.9 2.1 6.3 2.9 5.6 1.8 6.5 3 5.8 2.2 7.6 3 6.6 2.1 4.9 2.5 4.5 1.7 7.3 2.9 6.3 1.8 6.7 2.5 5.8 1.8 7.2 3.6 6.1 2.5 6.5 3.2 5.1 2 6.4 2.7 5.3 1.9 6.8 3 5.5 2.1 5.7 2.5 5 2 5.8 2.8 5.1 2.4 6.4 3.2 5.3 2.3 6.5 3 5.5 1.8 7.7 3.8 6.7 2.2 7.7 2.6 6.9 2.3 6 2.2 5 1.5 6.9 3.2 5.7 2.3 5.6 2.8 4.9 2 7.7 2.8 6.7 2 6.3 2.7 4.9 1.8 6.7 3.3 5.7 2.1 7.2 3.2 6 1.8 6.2 2.8 4.8 1.8 6.1 3 4.9 1.8 6.4 2.8 5.6 2.1 7.2 3 5.8 1.6 7.4 2.8 6.1 1.9 7.9 3.8 6.4 2 6.4 2.8 5.6 2.2 6.3 2.8 5.1 1.5 6.1 2.6 5.6 1.4 7.7 3 6.1 2.3 6.3 3.4 5.6 2.4 6.4 3.1 5.5 1.8 6 3 4.8 1.8 6.9 3.1 5.4 2.1 6.7 3.1 5.6 2.4 6.9 3.1 5.1 2.3 5.8 2.7 5.1 1.9 6.8 3.2 5.9 2.3 6.7 3.3 5.7 2.5 6.7 3 5.2 2.3 6.3 2.5 5 1.9 6.5 3 5.2 2 6.2 3.4 5.4 2.3 5.9 3 5.1 1.8
iris_id.txt
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
My_FCM2.m
function label_1=My_FCM2(K) %输入K:聚类数 %输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度 format long eps=1e-5; %定义迭代终止条件的eps alpha=2; %模糊加权指数,[1,+无穷) max_iter=100; %最大迭代次数 fitness=zeros(max_iter,1); data=dlmread(‘E:\www.cnblogs.comkailugaji\data\iris\iris_data.txt‘); %---------------------------------------------------------------------------------------------------- %对data做最大-最小归一化处理 [data_num,~]=size(data); X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data))); [X_num,X_dim]=size(X); %---------------------------------------------------------------------------------------------------- %随机初始化K个聚类中心 rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列 para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心 responsivity=zeros(X_num,K); R_up=zeros(X_num,K); % ---------------------------------------------------------------------------------------------------- % FCM算法 for t=1:max_iter %欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X‘,矩阵大小为X_num*K distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))‘-2*X*para_miu‘; %更新隶属度矩阵X_num*K for i=1:X_num for j=1:K if distant(i,j)==1 responsivity(i,j)=0; elseif distant(i,j)==0 responsivity(i,j)=1./sum(responsivity(i,:)==0); else R_up(i,j)=distant(i,j).^(-1/(alpha-1)); %隶属度矩阵的分子部分 responsivity(i,j)= R_up(i,j)./sum( R_up(i,:),2); end end end %目标函数值 fitness(t)=sum(sum(distant.*(responsivity.^(alpha)))); %更新聚类中心K*X_dim miu_up=(responsivity‘.^(alpha))*X; %μ的分子部分 para_miu=miu_up./((sum(responsivity.^(alpha)))‘*ones(1,X_dim)); if t>1 %改成while不行 if abs(fitness(t)-fitness(t-1))<eps break; end end end %iter=t; %实际迭代次数 [~,label_1]=max(responsivity,[],2);
succeed.m
function accuracy=succeed(K,id) %输入K:聚的类,id:训练后的聚类结果,N*1的矩阵 N=size(id,1); %样本个数 p=perms(1:K); %全排列矩阵 p_col=size(p,1); %全排列的行数 new_label=zeros(N,p_col); %聚类结果的所有可能取值,N*p_col num=zeros(1,p_col); %与真实聚类结果一样的个数 real_label=dlmread(‘E:\www.cnblogs.comkailugaji\data\iris\iris_id.txt‘); %将训练结果全排列为N*p_col的矩阵,每一列为一种可能性 for i=1:N for j=1:p_col for k=1:K if id(i)==k new_label(i,j)=p(j,k)-1; %加一减一看情况 end end end end %与真实结果比对,计算精确度 for j=1:p_col for i=1:N if new_label(i,j)==real_label(i) num(j)=num(j)+1; end end end accuracy=max(num)/N;
Eg_FCM.m
function ave_acc_FCM=Eg_FCM(K,max_iter) %输入K:聚的类,max_iter是最大迭代次数 %输出ave_acc_FCM:迭代max_iter次之后的平均准确度 s=0; for i=1:max_iter label_1=My_FCM2(K); accuracy=succeed(K,label_1); s=s+accuracy; end ave_acc_FCM=s/max_iter;
>> ave_acc_FCM=Eg_FCM(3,50) ave_acc_FCM = 0.893333333333333
此算法是一个大众化的算法,先初始化聚类中心,再进行迭代,对隶属函数进行分情况讨论,将距离为0的情况考虑进去,但是计算速度慢。而在“FCM算法的matlab程序”是先初始化模糊隶属函数,再进行迭代,这样就避免分母为零的情况,而且计算速度快。对于严谨性大众性,可以采用本文的算法,对于时间性,可以采用“FCM算法的matlab程序”算法。
标签:实现 == 算法 次数 3.3 mat 3.2 perm 输入
原文地址:https://www.cnblogs.com/kailugaji/p/9941755.html