码迷,mamicode.com
首页 > 编程语言 > 详细

算法第3章上机实践报告

时间:2018-11-11 23:35:52      阅读:178      评论:0      收藏:0      [点我收藏+]

标签:style   namespace   ons   想法   pre   自己   提高   span   --   

1.实践题目

数字三角形

2.问题描述

给定一个由 n行数字组成的数字三角形如下图所示。试设计一个算法,计算出从三角形 的顶至底的一条路径(每一步可沿左斜线向下或右斜线向下),使该路径经过的数字总和最大。

技术分享图片

 

3.算法描述

第一行只有一个数,无论哪条路径都要经过第一行,所以开辟一个二维数组从底至顶进行循环存储,到第二层开始取最大的路径保存即:b[i][j]=max(b[i+1][j],b[i+1][j+1])+a[i][j],最后新开辟的dp数组的第一个元素存的即为数字三角形路径总和最大的那个数

代码如下

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn = 105;
int n;
int a[maxn][maxn],b[maxn][maxn];
int main(){
    cin>>n;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++){
        cin>>a[i][j];
        }
    for(int i=n;i>=1;i--)
        for(int j=1;j<=i;j++){
            b[i][j]=max(b[i+1][j],b[i+1][j+1])+a[i][j];
        }
    cout<<b[1][1];
    return 0;
}

4.算法时间复杂度及空间复杂度分析

时间复杂度:循环中嵌套了一个循环,所以时间复杂度为O(n2)

空间复杂度:为了存储最大路径的值开辟了二维数组,所以空间复杂度为O(n2)

5.心得体会

本次实践还算比较顺利,看到前两题有思路直接a了,但是第三题的时候想法错了,后来回到宿舍才解决,结对编程带来了很多便捷,有时候一些问题自己思考不出来,和同伴讨论一下就知道自己的错误,大大提高了效率,动态规划主要是它的表达式的构建,感觉自己对动态规划类问题还不够熟悉,今后还要多加练习。

算法第3章上机实践报告

标签:style   namespace   ons   想法   pre   自己   提高   span   --   

原文地址:https://www.cnblogs.com/Lzyyy/p/9943395.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!