码迷,mamicode.com
首页 > 系统相关 > 详细

FM(Factorization Machines)模型详解

时间:2018-11-15 12:02:34      阅读:204      评论:0      收藏:0      [点我收藏+]

标签:有关   nes   依赖   向量   其他   区别   关联   基础上   对组   

优点

  1. FM模型可以在非常稀疏的数据中进行合理的参数估计,而SVM做不到这点

  2. 在FM模型的复杂度是线性的,优化效果很好,而且不需要像SVM一样依赖于支持向量。

  3. FM是一个通用模型,它可以用于任何特征为实值的情况。而其他的因式分解模型只能用于一些输入数据比较固定的情况。

与LR联系与区别

  • LR各个特征独立考虑,但实际上大量特征之间是有关联的,FM在LR的基础上引入(增加)组合特征。

  • 对组合特征的参数估计引入辅助(隐)向量,辅助(隐)向量的维度--K值,反映了FM模型的表达能力。

FM(Factorization Machines)模型详解

标签:有关   nes   依赖   向量   其他   区别   关联   基础上   对组   

原文地址:https://www.cnblogs.com/wujingqiao/p/9962453.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!