码迷,mamicode.com
首页 > 编程语言 > 详细

java使用elasticsearch分组进行聚合查询(group by)

时间:2018-11-17 13:09:29      阅读:5463      评论:0      收藏:0      [点我收藏+]

标签:span   group by   port   tle   image   long   builder   etag   bag   

java连接elasticsearch 进行聚合查询进行相应操作

一:对单个字段进行分组求和

1、表结构图片:

技术分享图片

根据任务id分组,分别统计出每个任务id下有多少个文字标题

1.SQL:select id, count(*as sum from task group by taskid;   

java ES连接工具类

public class ESClientConnectionUtil {
    public static TransportClient client=null;
    public final static String HOST = "192.168.200.211"; //服务器部署
    public final static Integer PORT = 9301; //端口

    public static TransportClient  getESClient(){
        System.setProperty("es.set.netty.runtime.available.processors", "false");
        if (client == null) {
            synchronized (ESClientConnectionUtil.class) {
                try {
                    //设置集群名称
                    Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();
                    //创建client
                    client = new PreBuiltTransportClient(settings).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(HOST), PORT));
                } catch (Exception ex) {
                    ex.printStackTrace();

                    System.out.println(ex.getMessage());
                }
            }
        }
        return client;
    }
    public static TransportClient  getESClientConnection(){
        if (client == null) {
            System.setProperty("es.set.netty.runtime.available.processors", "false");
                try {
                    //设置集群名称
                    Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();
                    //创建client
                    client = new PreBuiltTransportClient(settings).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(HOST), PORT));
                } catch (Exception ex) {
                    ex.printStackTrace();
                    System.out.println(ex.getMessage());
            }
        }
        return client;
    }

    //判断索引是否存在
    public static boolean judgeIndex(String index){
        client= getESClientConnection();
         IndicesAdminClient adminClient;
        //查询索引是否存在
        adminClient= client.admin().indices();
        IndicesExistsRequest request = new IndicesExistsRequest(index);
        IndicesExistsResponse responses = adminClient.exists(request).actionGet();

        if (responses.isExists()) {
            return true;
        }
        return false;
    }
}

 

java ES语句(根据单列进行分组求和)

//根据 任务id分组进行求和
  SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");
//根据taskid进行分组统计,统计出的列别名叫sum TermsAggregationBuilder termsBuilder
= AggregationBuilders.terms("sum").field("taskid");
sbuilder.addAggregation(termsBuilder); SearchResponse responses
= sbuilder.execute().actionGet(); //得到这个分组的数据集合 Terms terms = responses.getAggregations().get("sum"); List<BsKnowledgeInfoDTO> lists = new ArrayList<>(); for(int i=0;i<terms.getBuckets().size();i++){ //statistics String id =terms.getBuckets().get(i).getKey().toString();//id Long sum =terms.getBuckets().get(i).getDocCount();//数量 System.out.println("=="+terms.getBuckets().get(i).getDocCount()+"------"+terms.getBuckets().get(i).getKey()); }
//分别打印出统计的数量和id值

 根据多列进行分组求和

//根据 任务id分组进行求和
  SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");
//根据taskid进行分组统计,统计出的列别名叫sum
  TermsAggregationBuilder termsBuilder = AggregationBuilders.terms("sum").field("taskid");
//根据第二个字段进行分组
 TermsAggregationBuilder aAggregationBuilder2 = AggregationBuilders.terms("region_count").field("birthplace");
//如果存在第三个,以此类推; sbuilder.addAggregation(termsBuilder.subAggregation(aAggregationBuilder2)); SearchResponse responses
= sbuilder.execute().actionGet(); //得到这个分组的数据集合 Terms terms = responses.getAggregations().get("sum"); List<BsKnowledgeInfoDTO> lists = new ArrayList<>(); for(int i=0;i<terms.getBuckets().size();i++){ //statistics String id =terms.getBuckets().get(i).getKey().toString();//id Long sum =terms.getBuckets().get(i).getDocCount();//数量 System.out.println("=="+terms.getBuckets().get(i).getDocCount()+"------"+terms.getBuckets().get(i).getKey()); } //分别打印出统计的数量和id值

对多个field求max/min/sum/avg

SearchRequestBuilder requestBuilder = client.prepareSearch("hottopic").setTypes("hot");
//根据taskid进行分组统计,统计别名为sum
        TermsAggregationBuilder aggregationBuilder1 = AggregationBuilders.terms("sum").field("taskid") 
//根据tasktatileid进行升序排列 .order(Order.aggregation("tasktatileid", true));
// 求tasktitleid 进行求平均数 别名为avg_title
AggregationBuilder aggregationBuilder2 = AggregationBuilders.avg("avg_title").field("tasktitleid");
// AggregationBuilder aggregationBuilder3
= AggregationBuilders.sum("sum_taskid").field("taskid"); requestBuilder.addAggregation(aggregationBuilder1.subAggregation(aggregationBuilder2).subAggregation(aggregationBuilder3)); SearchResponse response = requestBuilder.execute().actionGet(); Terms aggregation = response.getAggregations().get("sum"); Avg terms2 = null; Sum term3 = null; for (Terms.Bucket bucket : aggregation.getBuckets()) { terms2 = bucket.getAggregations().get("avg_title"); // org.elasticsearch.search.aggregations.metrics.avg.InternalAvg term3 = bucket.getAggregations().get("sum_taskid"); // org.elasticsearch.search.aggregations.metrics.sum.InternalSum System.out.println("编号=" + bucket.getKey() + ";平均=" + terms2.getValue() + ";总=" + term3.getValue()); }

如上内容若有不恰当支持,请各位多多包涵并进行点评。技术在于沟通!

 

java使用elasticsearch分组进行聚合查询(group by)

标签:span   group by   port   tle   image   long   builder   etag   bag   

原文地址:https://www.cnblogs.com/chenyuanbo/p/9973311.html

(0)
(1)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!