码迷,mamicode.com
首页 > 编程语言 > 详细

分类与监督学习,朴素贝叶斯分类算法

时间:2018-11-18 22:28:22      阅读:217      评论:0      收藏:0      [点我收藏+]

标签:稳定性   评分   没有   数据修正   意义   预处理   技术   info   图片   

1.理解分类与监督学习、聚类与无监督学习。

(1)简述分类与聚类的联系与区别。

    分类是根据规则进行的,你把这个规则建立起来後还可以运用到其他尚未分类的数据,同时还可以根据新的已有类别数据修正分类规则,不断提高其分类准确性 聚类是纯粹的根据已有数据进行系统把数据聚类,有可能聚类出来的没有实际意义,聚类也无法通过训练数据和后期的数据不断提高准确度的。

(2)简述什么是监督学习与无监督学习。

    监督学习:一部分已知分类、有标记的样本来训练机器后,让它用学到的特征,对没有还分类、无标记的样本进行分类、贴标签。

    无监督学习:即非监督学习,是实现没有有标记的、已经分类好的样本,需要我们直接对输入数据集进行建模,例如聚类,最直接的例子就是我们常说的“人以群分,物以类聚”。我们只需要把相似度高的东西放在一起,对于新来的样本,计算相似度后,按照相似程度进行归类就好。

 

2.朴素贝叶斯分类算法 实例

利用关于心脏情患者的临床数据集,建立朴素贝叶斯分类模型。

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

目标分类变量疾病:–心梗–不稳定性心绞痛

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I‘,饮酒=‘是’,吸烟≈‘是”,住院天数<7)

最可能是哪个疾病?

上传演算过程。

技术分享图片

 

3.编程实现朴素贝叶斯分类算法

利用训练数据集,建立分类模型。

输入待分类项,输出分类结果。

可以心脏情患者的临床数据为例,但要对数据预处理。

 

分类与监督学习,朴素贝叶斯分类算法

标签:稳定性   评分   没有   数据修正   意义   预处理   技术   info   图片   

原文地址:https://www.cnblogs.com/844115-l/p/9979406.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!