标签:第一个 array 官方 print 方式 range 好的 proc 针对
列表推导式(list comprehensions)
场景1:将一个三维列表中所有一维数据为a的元素合并,组成新的二维列表。
最简单的方法:新建列表,遍历原三维列表,判断一维数组是否为a,若为a,则将该元素append至新列表中。
缺点:代码太繁琐,对于Python而言,执行速度会变慢很多。
针对场景1,我们首先应该想到列表解析式来处理:
lista = [item for item in array if item[0] == ‘a‘]
那么,什么是列表解析式?
官方解释:列表解析式是Python内置的非常简单却强大的可以用来创建list的生成式
可以看到,使用列表解析式的写法更加简短,除此之外,因为是Python内置的用法,底层使用c语言实现,相较于编写Python代码而言,运行速度更快。
场景2:对于一个列表,既要遍历索引又要遍历元素
这里可以使用Python內建函数enumerate,在循环中更好的获取得到索引
array = [‘I‘, "love‘, ‘Python‘] for i element in enumerate(array): array[i] = ‘%d:%s‘%(i, element)
可以使用列表推导式对其进行重构
def getitem(index, element): return ‘%d:%s‘%(index, element) array = [‘I‘, ‘love‘, ‘Python‘] arrayIndex = [getitem(index, element) for indexm element in enumerate(array)]
总结:如果要对现有可迭代对象做一下处理,然后生成新的列表,使用列表推导式将是最便捷的方法。
迭代器和生成器
迭代器(Iterator)
这的迭代器可以指for循环,在python中,对于像list,dict和文件等而言,都可以使用for循环,但是它们并不是迭代器,它们属于可迭代对象。
什么可迭代对象?
最简单的解释:可以使用for...in...语句进行循环的对象,就是可迭代对象(Iterable),可以使用isinstance()方法进行判断。
from collections import Iterable type = isinstance(‘python‘, Iterable) print type
什么是迭代器?
迭代器指的是可以使用next()方法来回调的对象,可以对可迭代对象使用iter()方法,将其转换为迭代器。
temp=iter([1, 2, 3]) print type(temp) print next(temp)
此时temp就是一个迭代器,所以说,迭代器基于两个方法:
可以理解为可被next()函数调用并不断返回下一个值的对象就是迭代器,在定义一个装饰器时将需要同时定义这两个方法。
迭代器的优势
在构建迭代器时,不是将所有元素一次性的加载,而是等调用next方法时返回元素,所有不需要考虑内存的问题。
迭代器应用场景
生成器
生成器是一种高级迭代器,使得需要返回一系列元素的函数所需的代码更加的简单和高效(不像创建迭代器代码那般冗长)
生成器函数
生成器函数基于yield指令,可以暂停一个函数并返回中间结果。当需要一个将返回一个序列或在循环中执行的函数时,就可以使用生成器,因为当这些元素被传递到另一个函数中进行后续处理时,一次返回一个元素可以有效的提升整体性能。
常见的应用场景是使用生成器生成数据流缓冲区
生成器表达式
生成式表达式是一种实现生成器的便捷方式,将列表推导式的中括号替换为圆括号。
和列表推导式的区别:列表生成式可以直接创建一个表,但是生成器表达式是一种边循环边计算,使得列表的元素可以在循环过程中一个个的推算出来,不需要创建完整的列表,从而节省了大量的空间。
g = (x*x for x in range(10))
总结:生成器是一种高级迭代器,生成器的优点是延迟计算,一次返回一个结果,这样非常适用于大数据量的计算。但是,使用生成器必须要注意的一点是:生成器只能遍历一次。
lambda 表达式(匿名函数)
lambda表达式可以省去定义函数的过程,让代码更加的简洁,适用于简单函数,编写处理更大业务的函数需要使用def定义
lambda表达式常用搭配map(), reduce(), filter() 函数使用
装饰器
装饰器本质是一个Python函数,它可以让其它函数在没有任何代码变动的情况下增加额外功能。有了装饰器,我们可以抽离出大量和函数功能本身无关的雷同代码并继续重用。经常用于具有切面需求的场景:包括插入日志,性能测试,事物处理,缓存和权限校验等。
场景:计算一个函数的执行时间
一种方法就是定义一个函数,用来专门计算函数的运行时间,然后运行时间计算完成之后再处理真正的业务代码,代码如下:
import time def get_time(func): startTime = time.time() func() endTime = time.time() processTime = (endTime - startTime) * 1000 print "The function timing is %d ms" %processTime def myfunc(): print "start func" time.sleep(0.8) print "end func" get_time(myfunc) myfunc()
但是这段代码的逻辑破坏了原有的代码逻辑,就是对所有func函数的调用都需要使用get_time(func)来实现。
那么,有没有更好的展示方式呢?当然有,那就是装饰器。
编写简单的装饰器
结合上述实例,编写装饰器:
def get_time(func): def wrapper(): startTime = time.time() func() endTime = time.time() processTime = (endTime - startTime) * 1000 print "The function timing is %f ms" %processTime return wrapper print "myfunc is:", myfunc.__name__ myfunc = get_time(myfunc) print "myfunc is:", myfunc.__name__ myfunc()
这样,一个简单的完整的装饰器就实现了,可以看到,装饰器并没有影响函数的执行逻辑和调用。在Python中,可以使用“@”语法糖来精简装饰器的代码,将上例更改为:
@get_time def myfunc(): print "start func" time.sleep(0.8) print "end func" print "myfunc is: ", myfunc.__name__ myfunc()
**装饰器的调用顺序**
装饰器可以叠加使用,若多个装饰器同时装饰一个函数,那么装饰器的调用顺序和@语法糖的声明顺序相反,也就是:
@decorator1 @decorator2 def func(): pass
等效于
func = decorator1(decorator2(func()))
被装饰的函数带参数
上述实例中,myfunc()是没有参数的,那如果添加参数的话,装饰器改如何编写呢?
#被装饰的函数带参数 def get_time3(func): def wrapper(*args, **kwargs): startTime = time.time() func(*args, **kwargs) endTime = time.time() processTime = (endTime - startTime) * 1000 print "The function timing is %f ms" %processTime return wrapper @get_time3 def myfunc2(a): print "start func" print a time.sleep(0.8) print "end func" a = "test" myfunc2(a)
带参数的装饰器
装饰器有很大的灵活性,它本身支持参数,例如在上述实例中,@get_time装饰器唯一的参数就是执行业务的函数,当然也可以在装饰器中添加参数,加以逻辑判断。
内置装饰器
Python中,常见的类装饰器包括:@staticmathod、@classmethod、@property
Python高级用法总结--(列表推导式,迭代器,生成器,装饰器)
标签:第一个 array 官方 print 方式 range 好的 proc 针对
原文地址:https://www.cnblogs.com/xushuhai/p/9965328.html