码迷,mamicode.com
首页 > 编程语言 > 详细

贪心算法--汽车加油问题

时间:2018-11-28 00:30:44      阅读:291      评论:0      收藏:0      [点我收藏+]

标签:using   比较   好的   include   最好   解决问题   设计   i++   原来   

基本要素:

贪心选择:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。

最优子结构:当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。

过程:

  1. 建立数学模型来描述问题;
  2. 把求解的问题分成若干个子问题;
  3. 对每一子问题求解,得到子问题的局部最优解;
  4. 把子问题的解局部最优解合成原来解问题的一个解。

汽车加油问题

一辆汽车加满油后可行驶 n公里。旅途中有若干个加油站。设计一个有效算法,指出应 在哪些加油站停靠加油,使沿途加油次数最少。

输入格式:

第一行有 2 个正整数n和 k(k<=1000 ),表示汽车加满油后可行驶n公里,且旅途中有 k个加油站。 第二行有 k+1 个整数,表示第 k 个加油站与第k-1 个加油站之间的距离。 第 0 个加油站表示出发地,汽车已加满油。 第 k+1 个加油站表示目的地。 

输出格式:

输出最少加油次数。如果无法到达目的地,则输出“No Solution!”。 

输入样例:

7 7
1 2 3 4 5 1 6 6 

输出样例:

 4

贪心性质分析:

找到汽车满油量时可以行驶的最大路程范围内的最后一个加油站,加油后则继续用此方法前进。需要检查每一小段路程是否超过汽车满油量时的最大支撑路程。

代码

#include<iostream>

using namespace std;

int n,k;
int a[1000];
int main()
{
  cin>>n>>k;
  for(int i=0;i<=k;i++)
    cin>>a[i];
  int minCount=0,drive=n;
  bool flag=true;
  for(int i=0;i<=k;i++){
    if(drive-a[i]>=0)
    drive-=a[i];
    else{
    drive=n;
    drive-=a[i];
    if(drive<0)flag=false;
    minCount++;}}
  if(!flag)cout<<"No Solution!"<<endl;
  else cout<<minCount<<endl;
  return 0;
}

遇到的问题及结对情况

刚开始解决输出"No Solution!"时,采用直接打印然后break,犯了比较低级的错误。结对能够对问题有更加深的理解且解决问题快。

 

贪心算法--汽车加油问题

标签:using   比较   好的   include   最好   解决问题   设计   i++   原来   

原文地址:https://www.cnblogs.com/Adam-Ye/p/10029846.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!