码迷,mamicode.com
首页 > 编程语言 > 详细

《Python机器学习kaggle案例》-- 网易云课堂

时间:2018-12-01 13:20:39      阅读:419      评论:0      收藏:0      [点我收藏+]

标签:course   ESS   fill   com   stc   median   网易   tor   src   

https://study.163.com/course/courseMain.htm?courseId=1003551009

LinearRegression
# -*- coding: utf-8 -*-
"""
Created on Sat Dec  1 09:24:27 2018

@author: zh
"""

import pandas as pd
import numpy as np

titanic = pd.read_csv(train.csv)

titanic[Age] = titanic[Age].fillna(titanic[Age].median())

titanic.loc[titanic[Sex] == male, Sex] = 0
titanic.loc[titanic[Sex] == female, Sex] = 1

titanic[Embarked] = titanic[Embarked].replace(nan, np.nan).fillna(S)
titanic.loc[titanic[Embarked] == S, Embarked] = 0
titanic.loc[titanic[Embarked] == C, Embarked] = 1
titanic.loc[titanic[Embarked] == Q, Embarked] = 2

from sklearn.linear_model import LinearRegression
from sklearn.cross_validation import KFold
predictors = [Pclass, Sex, Age, SibSp, Parch, Fare, Embarked]
alg = LinearRegression()
kf = KFold(titanic.shape[0], n_folds=3, random_state=1)
predictions = []
for train, test  in kf:
    train_predictors = (titanic[predictors].iloc[train, :])
    train_target = titanic[Survived].iloc[train]
    alg.fit(train_predictors, train_target)
    test_predictions = alg.predict(titanic[predictors].iloc[test, :])
    predictions.append(test_predictions)

predictions = np.concatenate(predictions, axis=0)
predictions[predictions > 0.5] = 1
predictions[predictions <= 0.5] = 0
accuracy = sum(predictions == titanic[Survived])/len(predictions)

#accuracy = 0.7833894500561167

LogisticRegression

# -*- coding: utf-8 -*-
"""
Created on Sat Dec  1 09:34:55 2018

@author: zh
"""

import pandas as pd
import numpy as np

titanic = pd.read_csv(train.csv)

titanic[Age] = titanic[Age].fillna(titanic[Age].median())

titanic.loc[titanic[Sex] == male, Sex] = 0
titanic.loc[titanic[Sex] == female, Sex] = 1

titanic[Embarked] = titanic[Embarked].replace(nan, np.nan).fillna(S)
titanic.loc[titanic[Embarked] == S, Embarked] = 0
titanic.loc[titanic[Embarked] == C, Embarked] = 1
titanic.loc[titanic[Embarked] == Q, Embarked] = 2

predictors = [Pclass, Sex, Age, SibSp, Parch, Fare, Embarked]

from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression

alg = LogisticRegression(random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic[Survived], cv=3)
accuracy = scores.mean()

#accuracy = 0.7878787878787877

RandomForestClassifier

# -*- coding: utf-8 -*-
"""
Created on Sat Dec  1 09:37:31 2018

@author: zh
"""
import pandas as pd
import numpy as np

titanic = pd.read_csv(train.csv)

titanic[Age] = titanic[Age].fillna(titanic[Age].median())

titanic.loc[titanic[Sex] == male, Sex] = 0
titanic.loc[titanic[Sex] == female, Sex] = 1

titanic[Embarked] = titanic[Embarked].replace(nan, np.nan).fillna(S)
titanic.loc[titanic[Embarked] == S, Embarked] = 0
titanic.loc[titanic[Embarked] == C, Embarked] = 1
titanic.loc[titanic[Embarked] == Q, Embarked] = 2

predictors = [Pclass, Sex, Age, SibSp, Parch, Fare, Embarked]

from sklearn import cross_validation
from sklearn.ensemble import RandomForestClassifier
predictors = [Pclass, Sex, Age, SibSp, Parch, Fare, Embarked]
alg = RandomForestClassifier(random_state=1, n_estimators=10, min_samples_split=2, min_samples_leaf=1)
kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic[Survived], cv=kf)
accuracy = scores.mean()
#accuracy = 0.7856341189674523

alg = RandomForestClassifier(random_state=1, n_estimators=50, min_samples_split=4, min_samples_leaf=2)
kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic[Survived], cv=kf)
accuracy = scores.mean()
#accuracy = 0.8159371492704826

max_acc = 0
for n_estimators in range(1,60,10):
    for min_samples_split in range(2,10):
        for min_samples_leaf in range(1,10):
            alg = RandomForestClassifier(random_state=1, n_estimators=n_estimators, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf)
            kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
            scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic[Survived], cv=kf)
            accuracy = scores.mean()
            if accuracy>max_acc:
                print(n_estimators,min_samples_split,min_samples_leaf)
                max_acc = accuracy
print(max_acc)
#max_acc = 0.8316498316498316

feature_selection

# -*- coding: utf-8 -*-
"""
Created on Sat Dec  1 09:52:38 2018

@author: zh
"""

import pandas as pd
import numpy as np

titanic = pd.read_csv(train.csv)

titanic[Age] = titanic[Age].fillna(titanic[Age].median())

titanic.loc[titanic[Sex] == male, Sex] = 0
titanic.loc[titanic[Sex] == female, Sex] = 1

titanic[Embarked] = titanic[Embarked].replace(nan, np.nan).fillna(S)
titanic.loc[titanic[Embarked] == S, Embarked] = 0
titanic.loc[titanic[Embarked] == C, Embarked] = 1
titanic.loc[titanic[Embarked] == Q, Embarked] = 2

titanic[FamilySize] = titanic[SibSp] + titanic[Parch]
titanic[NameLength] = titanic[Name].apply(lambda x: len(x))

import re
def get_title(name):
    title_search = re.search( ([A-Za-z]+)\., name)
    if title_search:
        return title_search.group(1)
    return ‘‘
titles = titanic[Name].apply(get_title)
#pd.value_counts(titles)

title_mapping = {Mr: 1, Miss: 2, Mrs: 3, Master: 4, Dr: 5, Rev: 6, Col: 7, Major: 8, Mlle: 9, Capt: 10, Ms: 11, Jonkheer: 12, Don:13, Sir:14, Countess:15, Lady:16, Mme:17}
for k,v in title_mapping.items():
    titles[titles==k]=v
#pd.value_counts(titles)
titanic[Title] = titles

import numpy as np
from sklearn.feature_selection import SelectKBest, f_classif
import matplotlib.pyplot as plt

predictors = [Pclass, Sex, Age, SibSp, Parch, Fare, Embarked, FamilySize, Title, NameLength]

selector = SelectKBest(f_classif, k=5)
selector.fit(titanic[predictors], titanic[Survived])
scores = -np.log10(selector.pvalues_)
plt.bar(range(len(predictors)), scores)
plt.xticks(range(len(predictors)), predictors, rotation=vertical)
plt.show()

from sklearn import cross_validation
from sklearn.ensemble import RandomForestClassifier
predictors = [Pclass, Sex, Fare, Title]

alg = RandomForestClassifier(random_state=1, n_estimators=50, min_samples_split=4, min_samples_leaf=2)
kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic[Survived], cv=kf)
accuracy = scores.mean()

#accuracy=0.8114478114478114

技术分享图片

GradientBoostingClassifier

# -*- coding: utf-8 -*-
"""
Created on Sat Dec  1 09:52:38 2018

@author: zh
"""
import pandas as pd
import numpy as np

titanic = pd.read_csv(train.csv)

titanic[Age] = titanic[Age].fillna(titanic[Age].median())

titanic.loc[titanic[Sex] == male, Sex] = 0
titanic.loc[titanic[Sex] == female, Sex] = 1

titanic[Embarked] = titanic[Embarked].replace(nan, np.nan).fillna(S)
titanic.loc[titanic[Embarked] == S, Embarked] = 0
titanic.loc[titanic[Embarked] == C, Embarked] = 1
titanic.loc[titanic[Embarked] == Q, Embarked] = 2

titanic[FamilySize] = titanic[SibSp] + titanic[Parch]
titanic[NameLength] = titanic[Name].apply(lambda x: len(x))

import re
def get_title(name):
    title_search = re.search( ([A-Za-z]+)\., name)
    if title_search:
        return title_search.group(1)
    return ‘‘
titles = titanic[Name].apply(get_title)
#pd.value_counts(titles)

title_mapping = {Mr: 1, Miss: 2, Mrs: 3, Master: 4, Dr: 5, Rev: 6, Col: 7, Major: 8, Mlle: 9, Capt: 10, Ms: 11, Jonkheer: 12, Don:13, Sir:14, Countess:15, Lady:16, Mme:17}
for k,v in title_mapping.items():
    titles[titles==k]=v
#pd.value_counts(titles)
titanic[Title] = titles

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold

algorithms = [
    [GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), [Pclass, Sex, Age, SibSp, Parch, Fare, Embarked, Title]],
    [LogisticRegression(random_state=1), [Pclass, Sex, Age, SibSp, Parch, Fare, Embarked, Title]]
]
kf = KFold(titanic.shape[0], n_folds=3, random_state=1)
predictions = []
for train, test  in kf:
    train_target = titanic[Survived].iloc[train]
    full_test_predictions = []
    for alg, predictors in algorithms:
        alg.fit(titanic[predictors].iloc[train, :], train_target)
        test_predictions = alg.predict_proba(titanic[predictors].iloc[test, :].astype(float))[:,1]
        full_test_predictions.append(test_predictions)
    test_predictions = (full_test_predictions[0]*3 + full_test_predictions[1])/4
    test_predictions[test_predictions <= 0.5] = 0
    test_predictions[test_predictions > 0.5] = 1
    predictions.append(test_predictions)
predictions = np.concatenate(predictions, axis=0)
accuracy = sum(predictions == titanic[Survived])/len(predictions)

#accuracy=0.8204264870931538

 

《Python机器学习kaggle案例》-- 网易云课堂

标签:course   ESS   fill   com   stc   median   网易   tor   src   

原文地址:https://www.cnblogs.com/LearnFromNow/p/10048373.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!