标签:若是 抽屉原理 hashcode img 转换 个数 blog 字符 cat
传统的Hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上仅相当于伪随机数产生算法。传统的hash算法产生的两个签名,如果原始内容在一定概率下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别很大。所以传统的Hash是无法在签名的维度上来衡量原内容的相似度,而SimHash本身属于一种局部敏感哈希算法,它产生的hash签名在一定程度上可以表征原内容的相似度。
我们主要解决的是文本相似度计算,要比较的是两个文章是否相识,当然我们降维生成了hash签名也是用于这个目的。看到这里估计大家就明白了,我们使用的simhash就算把文章中的字符串变成 01 串也还是可以用于计算相似度的,而传统的hash却不行。我们可以来做个测试,两个相差只有一个字符的文本串,“你妈妈喊你回家吃饭哦,回家罗回家罗” 和 “你妈妈叫你回家吃饭啦,回家罗回家罗”。
通过simhash计算结果为:
1000010010101101111111100000101011010001001111100001001011001011
1000010010101101011111100000101011010001001111100001101010001011
通过传统hash计算为:
0001000001100110100111011011110
1010010001111111110010110011101
大家可以看得出来,相似的文本只有部分 01 串变化了,而普通的hash却不能做到,这个就是局部敏感哈希的魅力。
假设我们有海量的文本数据,我们需要根据文本内容将它们进行去重。对于文本去重而言,目前有很多NLP相关的算法可以在很高精度上来解决,但是我们现在处理的是大数据维度上的文本去重,这就对算法的效率有着很高的要求。而局部敏感hash算法可以将原始的文本内容映射为数字(hash签名),而且较为相近的文本内容对应的hash签名也比较相近。SimHash算法是Google公司进行海量网页去重的高效算法,它通过将原始的文本映射为64位的二进制数字串,然后通过比较二进制数字串的差异进而来表示原始文本内容的差异。
simhash是由 Charikar 在2002年提出来的,本文为了便于理解尽量不使用数学公式,分为这几步:
(注:具体的事例摘自Lanceyan的博客《海量数据相似度计算之simhash和海明距离》)
1、分词,把需要判断文本分词形成这个文章的特征单词。最后形成去掉噪音词的单词序列并为每个词加上权重,我们假设权重分为5个级别(1~5)。比如:“ 美国“51区”雇员称内部有9架飞碟,曾看见灰色外星人 ” ==> 分词后为 “ 美国(4) 51区(5) 雇员(3) 称(1) 内部(2) 有(1) 9架(3) 飞碟(5) 曾(1) 看见(3) 灰色(4) 外星人(5)”,括号里是代表单词在整个句子里重要程度,数字越大越重要。
2、hash,通过hash算法把每个词变成hash值,比如“美国”通过hash算法计算为 100101,“51区”通过hash算法计算为 101011。这样我们的字符串就变成了一串串数字,还记得文章开头说过的吗,要把文章变为数字计算才能提高相似度计算性能,现在是降维过程进行时。
3、加权,通过 2步骤的hash生成结果,需要按照单词的权重形成加权数字串,比如“美国”的hash值为“100101”,通过加权计算为“4 -4 -4 4 -4 4”;“51区”的hash值为“101011”,通过加权计算为 “ 5 -5 5 -5 5 5”。
4、合并,把上面各个单词算出来的序列值累加,变成只有一个序列串。比如 “美国”的 “4 -4 -4 4 -4 4”,“51区”的 “ 5 -5 5 -5 5 5”, 把每一位进行累加, “4+5 -4+-5 -4+5 4+-5 -4+5 4+5” ==》 “9 -9 1 -1 1 9”。这里作为示例只算了两个单词的,真实计算需要把所有单词的序列串累加。
5、降维,把4步算出来的 “9 -9 1 -1 1 9” 变成 0 1 串,形成我们最终的simhash签名。 如果每一位大于0 记为 1,小于0 记为 0。最后算出结果为:“1 0 1 0 1 1”。
整个过程的流程图为:
我们把库里的文本都转换为simhash签名,并转换为long类型存储,空间大大减少。现在我们虽然解决了空间,但是如何计算两个simhash的相似度呢?难道是比较两个simhash的01有多少个不同吗?对的,其实也就是这样,我们通过海明距离(Hamming distance)就可以计算出两个simhash到底相似不相似。两个simhash对应二进制(01串)取值不同的数量称为这两个simhash的海明距离。举例如下: 10101 和 00110 从第一位开始依次有第一位、第四、第五位不同,则海明距离为3。对于二进制字符串的a和b,海明距离为等于在a XOR b运算结果中1的个数(普遍算法)。
经过simhash映射以后,我们得到了每个文本内容对应的simhash签名,而且也确定了利用汉明距离来进行相似度的衡量。那剩下的工作就是两两计算我们得到的simhash签名的汉明距离了,这在理论上是完全没问题的,但是考虑到我们的数据是海量的这一特点,我们是否应该考虑使用一些更具效率的存储呢?其实SimHash算法输出的simhash签名可以为我们很好建立索引,从而大大减少索引的时间,那到底怎么实现呢?
这时候大家有没有想到hashmap呢,一种理论上具有O(1)复杂度的查找数据结构。我们要查找一个key值时,通过传入一个key就可以很快的返回一个value,这个号称查找速度最快的数据结构是如何实现的呢?看下hashmap的内部结构:
如果我们需要得到key对应的value,需要经过这些计算,传入key,计算key的hashcode,得到7的位置;发现7位置对应的value还有好几个,就通过链表查找,直到找到v72。其实通过这么分析,如果我们的hashcode设置的不够好,hashmap的效率也不见得高。借鉴这个算法,来设计我们的simhash查找。通过顺序查找肯定是不行的,能否像hashmap一样先通过键值对的方式减少顺序比较的次数。看下图:
存储:
1、将一个64位的simhash签名拆分成4个16位的二进制码。(图上红色的16位)
2、分别拿着4个16位二进制码查找当前对应位置上是否有元素。(放大后的16位)
3、对应位置没有元素,直接追加到链表上;对应位置有则直接追加到链表尾端。(图上的 S1 — SN)
查找:
1、将需要比较的simhash签名拆分成4个16位的二进制码。
2、分别拿着4个16位二进制码每一个去查找simhash集合对应位置上是否有元素。
3、如果有元素,则把链表拿出来顺序查找比较,直到simhash小于一定大小的值,整个过程完成。
原理:
借鉴hashmap算法找出可以hash的key值,因为我们使用的simhash是局部敏感哈希,这个算法的特点是只要相似的字符串只有个别的位数是有差别变化。那这样我们可以推断两个相似的文本,至少有16位的simhash是一样的。具体选择16位、8位、4位,大家根据自己的数据测试选择,虽然比较的位数越小越精准,但是空间会变大。分为4个16位段的存储空间是单独simhash存储空间的4倍。之前算出5000w数据是 382 Mb,扩大4倍1.5G左右,还可以接受
1. 当文本内容较长时,使用SimHash准确率很高,SimHash处理短文本内容准确率往往不能得到保证;
2. 文本内容中每个term对应的权重如何确定要根据实际的项目需求,一般是可以使用IDF权重来进行计算。
1. 严澜的博客《海量数据相似度计算之simhash短文本查找》
2. 《Similarity estimation techniques from rounding algorithms》
作者:Poll的笔记
博客出处:http://www.cnblogs.com/maybe2030/
本文版权归作者和博客园所有,欢迎转载,转载请标明出处。
如果某一天,面试官问你如何设计一个比较两篇文章相似度的算法?可能你会回答几个比较传统点的思路:
下面,我们来分析下这两种方法。
举个例子,我们假设有以下三段文本:
使用传统hash可能会得到如下的结果:
可理想当中的hash函数,需要对几乎相同的输入内容,产生相同或者相近的hash值,换言之,hash值的相似程度要能直接反映输入内容的相似程度,故md5等传统hash方法也无法满足我们的需求。
车到山前必有路,来自于GoogleMoses Charikar发表的一篇论文“detecting near-duplicates for web crawling”中提出了simhash算法,专门用来解决亿万级别的网页的去重任务。
simhash作为locality sensitive hash(局部敏感哈希)的一种:
如此,通过比较多个文档的simHash值的海明距离,可以获取它们的相似度。
simhash算法分为5个步骤:分词、hash、加权、合并、降维,具体过程如下所述:
其流程如下图所示:
举个例子,上面我们计算到的“CSDN博客”的simhash签名值为“1 0 1 0 1 1”,假定我们计算出另外一个短语的签名值为“1 0 1 0 0 0”,那么根据异或规则,我们可以计算出这两个签名的海明距离为2,从而判定这两个短语的相似度是比较高的。
换言之,现在问题转换为:对于64位的SimHash值,我们只要找到海明距离在3以内的所有签名,即可找出所有相似的短语。
但关键是,如何将其扩展到海量数据呢?譬如如何在海量的样本库中查询与其海明距离在3以内的记录呢?
这两种方案,要么时间复杂度高,要么空间复杂度复杂,能否有一种方案可以达到时空复杂度的绝佳平衡呢?答案是肯定的:
具体如下图所示:
如此,如果样本库中存有2^34(差不多10亿)的simhash签名,则每个table返回2^(34-16)=262144个候选结果,大大减少了海明距离的计算成本。
(部分内容及图片参考自:http://grunt1223.iteye.com/blog/964564 ,后续图片会全部重画)
待续。
@复旦李斌:simhash不是google发明的,是princeton的人早在stoc02上发表的。google在www07上的那篇论文只是在网页查重上应用了下。事实上www07中的算法是stoc02中随机超平面的一个极其巧妙的实现,bit差异的期望正好等于原姶向量的余弦。
标签:若是 抽屉原理 hashcode img 转换 个数 blog 字符 cat
原文地址:https://www.cnblogs.com/sddai/p/10088007.html