标签:bubuko def oid 特化 main min ios 解析 ima
C++中有几种交换变量的方法?
交换变量的方法——定义宏代码块 vs 定义函数:
C++中有没有解决方案集合两种方法的优点?
泛型编程的概念——不考虑具体数据类型的编程方式
函数模板:
函数模板的语法规则:
函数模板的使用:
示例——使用函数模板:
#include <iostream>
using namespace std;
template < typename T >
void Swap(T& a, T& b)
{
T c = a;
a = b;
b = c;
}
template < typename T >
void Sort(T a[], int len)
{
for(int i=0; i<len; i++)
{
for(int j=i; j<len; j++)
{
if( a[i] > a[j] )
{
Swap(a[i], a[j]);
}
}
}
}
template < typename T >
void Println(T a[], int len)
{
for(int i=0; i<len; i++)
{
cout << a[i] << ", ";
}
cout << endl;
}
int main()
{
int a[5] = {5, 3, 2, 4, 1};
Println(a, 5);
Sort(a, 5);
Println(a, 5);
string s[5] = {"Java", "C++", "Pascal", "Ruby", "Basic"};
Println(s, 5);
Sort(s, 5);
Println(s, 5);
return 0;
}
运行结果为:
[root@bogon Desktop]# g++ test.cpp
[root@bogon Desktop]# ./a.out
5, 3, 2, 4, 1,
1, 2, 3, 4, 5,
Java, C++, Pascal, Ruby, Basic,
Basic, C++, Java, Pascal, Ruby,
函数模板深入理解:
注意事项:
示例——编译器从函数模板通过具体类型产生不同的函数:
#include <iostream>
using namespace std;
template < typename T >
void Swap(T& a, T& b)
{
T c = a;
a = b;
b = c;
}
typedef void(FuncI)(int&, int&);
typedef void(FuncD)(double&, double&);
int main()
{
FuncI* pi = Swap; // 编译器自动推导 T 为 int
FuncD* pd = Swap; // 编译器自动推导 T 为 double
cout << "pi = " << reinterpret_cast<void*>(pi) << endl;
cout << "pd = " << reinterpret_cast<void*>(pd) << endl;
return 0;
}
运行结果为:
[root@bogon Desktop]# g++ test.cpp
[root@bogon Desktop]# ./a.out
pi = 0x40091e
pd = 0x40094a
可以看到,编译器通过函数模板产生了两个地址不同的实实在在的函数!
多参数函数模板——函数模板可以定义任意多个不同的类型参数:
对于多参数函数模板:
示例——多参数函数模板:
#include <iostream>
using namespace std;
template
< typename T1, typename T2, typename T3 >
T1 Add(T2 a, T3 b)
{
return static_cast<T1>(a + b);
}
int main()
{
// T1 = int, T2 = double, T3 = double
int r1 = Add<int>(0.5, 0.8);
// T1 = double, T2 = float, T3 = double
double r2 = Add<double, float>(0.5, 0.8);
// T1 = float, T2 = float, T3 = float
float r3 = Add<float, float, float>(0.5, 0.8);
cout << "r1 = " << r1 << endl; // r1 = 1
cout << "r2 = " << r2 << endl; // r2 = 1.3
cout << "r3 = " << r3 << endl; // r3 = 1.3
return 0;
}
运行结果为:
[root@bogon Desktop]# g++ test.cpp
[root@bogon Desktop]# ./a.out
r1 = 1
r2 = 1.3
r3 = 1.3
当函数重载遇上函数模板会发生什么?
函数模板可以像普通函数一样被重载:
示例——重载函数模板:
#include <iostream>
using namespace std;
template < typename T >
T Max(T a, T b)
{
cout << "T Max(T a, T b)" << endl;
return a > b ? a : b;
}
int Max(int a, int b)
{
cout << "int Max(int a, int b)" << endl;
return a > b ? a : b;
}
template < typename T >
T Max(T a, T b, T c)
{
cout << "T Max(T a, T b, T c)" << endl;
return Max(Max(a, b), c);
}
int main()
{
int a = 1;
int b = 2;
cout << Max(a, b) << endl; // 普通函数 Max(int, int)
cout << Max<>(a, b) << endl; // 函数模板 Max<int>(int, int)
cout << endl;
cout << Max(3.0, 4.0) << endl; // 函数模板 Max<double>(double, double)
cout << Max(5.0, 6.0, 7.0) << endl; // 函数模板 Max<double>(double, double, double)
cout << endl;
cout << Max(‘a‘, 100) << endl; // 普通函数 Max(int, int)
return 0;
}
运行结果为:
[root@bogon Desktop]# g++ test.cpp
[root@bogon Desktop]# ./a.out
int Max(int a, int b)
2
T Max(T a, T b)
2
T Max(T a, T b)
4
T Max(T a, T b, T c)
T Max(T a, T b)
T Max(T a, T b)
7
int Max(int a, int b)
100
在C++中是否能够将泛型的思想应用于类?
类模板:
C++中将模板的思想应用于类,使得类的实现不关注数据元素的具体类型,而只关注类所需要实现的功能。
C++中的类模板:
类模板的应用:
示例——类模板:
#include <iostream>
using namespace std;
template < typename T >
class Operator
{
public:
T add(T a, T b) { return a + b; }
T minus(T a, T b) { return a - b; }
T multiply(T a, T b) { return a * b; }
T divide(T a, T b) { return a / b; }
};
string operator-(string& l, string& r)
{
return "Minus";
}
int main()
{
Operator<int> op1;
cout << op1.add(1, 2) << endl;
Operator<string> op2;
cout << op2.add("Hello", "World") << endl;
cout << op2.minus("Hello", "World") << endl;
return 0;
}
运行结果为:
[root@bogon Desktop]# g++ test.cpp
[root@bogon Desktop]# ./a.out
3
HelloWorld
Minus
类模板的工程应用:
示例——模板类的工程应用:
// Operator.h
#ifndef _OPERATOR_H_
#define _OPERATOR_H_
template < typename T >
class Operator
{
public:
T add(T a, T b);
T minus(T a, T b);
T multiply(T a, T b);
T divide(T a, T b);
};
template < typename T >
T Operator<T>::add(T a, T b)
{
return a + b;
}
template < typename T >
T Operator<T>::minus(T a, T b)
{
return a - b;
}
template < typename T >
T Operator<T>::multiply(T a, T b)
{
return a * b;
}
template < typename T >
T Operator<T>::divide(T a, T b)
{
return a / b;
}
#endif
// test.cpp
#include <iostream>
#include "Operator.h"
using namespace std;
int main()
{
Operator<int> op1;
cout << op1.add(1, 2) << endl;
cout << op1.multiply(4, 5) << endl;
cout << op1.minus(5, 6) << endl;
cout << op1.divide(10, 5) << endl;
return 0;
}
运行结果为:
[root@bogon Desktop]# g++ test.cpp
[root@bogon Desktop]# ./a.out
3
20
-1
2
类模板可以定义任意多个不同的类型参数:
类模板可以被特化:
类模板的特化类型:
示例——类模板的特化:
#include <iostream>
using namespace std;
template
< typename T1, typename T2 >
class Test
{
public:
void add(T1 a, T2 b)
{
cout << "void add(T1 a, T2 b)" << endl;
cout << a + b << endl;
}
};
template
< typename T1, typename T2 >
class Test < T1*, T2* > // 关于指针的特化实现
{
public:
void add(T1* a, T2* b)
{
cout << "void add(T1* a, T2* b)" << endl;
cout << *a + *b << endl;
}
};
template
< typename T >
class Test < T, T > // 当 Test 类模板的两个类型参数完全相同时,使用这个实现
{
public:
void add(T a, T b)
{
cout << "void add(T a, T b)" << endl;
cout << a + b << endl;
}
void print()
{
cout << "class Test < T, T >" << endl;
}
};
template
< >
class Test < void*, void* > // 当 T1 == void* 并且 T2 == void* 时
{
public:
void add(void* a, void* b)
{
cout << "void add(void* a, void* b)" << endl;
cout << "Error to add void* param..." << endl;
}
};
int main()
{
Test<int, float> t1;
Test<long, long> t2;
Test<void*, void*> t3;
t1.add(1, 2.5);
cout << endl;
t2.add(5, 5);
t2.print();
cout << endl;
t3.add(NULL, NULL);
cout << endl;
Test<int*, double*> t4;
int a = 1;
double b = 0.1;
t4.add(&a, &b);
return 0;
}
运行结果为:
[root@bogon Desktop]# g++ test.cpp
[root@bogon Desktop]# ./a.out
void add(T1 a, T2 b)
3.5
void add(T a, T b)
10
class Test < T, T >
void add(void* a, void* b)
Error to add void* param...
void add(T1* a, T2* b)
1.1
类模板特化注意事项:
类模板特化与重定义有区别吗?函数模板可以被特化吗?
重定义和特化的不同:
函数模板只支持类型参数完全特化:
示例——函数模板完全特化与函数重载:
#include <iostream>
using namespace std;
template
< typename T >
bool Equal(T a, T b)
{
cout << "bool Equal(T a, T b)" << endl;
return a == b;
}
template
< >
bool Equal<double>(double a, double b)
{
const double delta = 0.00000000000001;
double r = a - b;
cout << "bool Equal<double>(double a, double b)" << endl;
return (-delta < r) && (r < delta);
}
bool Equal(double a, double b)
{
const double delta = 0.00000000000001;
double r = a - b;
cout << "bool Equal(double a, double b)" << endl;
return (-delta < r) && (r < delta);
}
int main()
{
cout << Equal( 1, 1 ) << endl;
cout << Equal( 0.001, 0.001 ) << endl;
cout << Equal<>( 0.001, 0.001 ) << endl;
return 0;
}
运行结果为:
[root@bogon Desktop]# g++ test.cpp
[root@bogon Desktop]# ./a.out
bool Equal(T a, T b)
1
bool Equal(double a, double b)
1
bool Equal<double>(double a, double b)
1
工程中的建议:
当需要重载函数模板时,优先考虑使用模板特化;当模板特化无法满足需求,再使用函数重载!
标签:bubuko def oid 特化 main min ios 解析 ima
原文地址:https://www.cnblogs.com/PyLearn/p/10093126.html