码迷,mamicode.com
首页 > 编程语言 > 详细

机器学习八大算法

时间:2018-12-20 20:38:11      阅读:218      评论:0      收藏:0      [点我收藏+]

标签:基本应用   原因   机器学习   过拟合   定义   思想   标准   压缩   标准化   

机器学习入门知识

机器学习是什么?

机器学习的定义有很多,我自己的理解是,机器学习是使机器拥有解决实际问题的能力,他能够根据经验数据分析现有的问题,进行分类和预测

有监督学习和无监督学习

面对要解决的问题首先分析是分类还是回归问题,再进一步看看是监督学习的方法好还是无监督学习的方法好,监督学习是事前就将结果进行了标记,在监视的情况下看运行的结果,类似于圈套,对结果是具体的,而无监督学习没有明确的结果

无监督学习是降维和聚类

有监督学习是线性回归(单变量、多变量),逻辑回归(LR),神经网络,支持向量机(svm),决策树

下面来一一介绍他们的核心和基本应用

从易到难,由浅入深

监督学习中有个基本的模型EPT三要素,其中E是经验,P是性能,T是任务

单变量线性回归:

他的核心思想是以预测值与真实值de误差平方和作为代价,再利用梯度下降的方法传递误测,更新参数

基本应用:

明确目标,分析问题,加载数据,数据处理(数据压缩,归一化),数据标准化,带入模型,进行训练,通过代价函数提高性能,通过梯度下降的方法找到参数的最优解,得到模型

用测试集进行测试,看看准确率,指导自己的模型,提高泛化能力

插入知识----机器学习设计

面对一些训练集和测试集还有交叉验证集,常常会出现过拟合,欠拟合的问题,针对这些问题怎样来进行调试

过拟合的产生原因是过于拟合训练集的数据,于至于模型不能泛化,可以通过以下途径来解决

1.是正则化,引入参数lamda,减小特征的权重,增加代价  

机器学习八大算法

标签:基本应用   原因   机器学习   过拟合   定义   思想   标准   压缩   标准化   

原文地址:https://www.cnblogs.com/wxjqss/p/10151595.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!