标签:结果 ima 遍历路径 llb 顺序 binary javascrip .com 最大
二叉搜索树树(Binary Search Tree),它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
首先先创建一个辅助节点类Node,它初始化了三个属性:节点值,左孩子,有孩子。
class Node {
constructor(value) {
this.value = value;
this.left = null;
this.right = null;
}
}
接着创建一个二叉搜索树类BST,它初始化了根节点为null。
class BST {
constructor() {
this.root = null;
}
}
然后,给这个BST类声明一些方法:
要向树中插入一个新的节点(或项),要经历三个步骤。
代码如下:
insert(value) {
var newNode = new Node(value);//实例化一个新节点
var root = this.root;
if (root == null) { //如果根节点不存在
this.root = newNode; //将这个新节点作为根节点
} else { //如果根节点存在
insertNode(root, newNode); //将这个新节点在根节点之后找到合适位置插入
}
}
如果是将节点加在非根节点的其他位置,那么这里为了方便起见,我们创建一个辅助函数:insertNode(node,newNode);
/*
*函数名称:insertNode
*函数说明:将新节点newNode插入到node节点之后的合适位置
*函数参数:newNode,要插入的新节点
* node,node节点
*/
function insertNode(node, newNode) {
//如果newNode节点值小于node节点值,进入node节点左分支
if (newNode.value < node.value) {
//如果node节点左孩子为空
if (node.left == null) {
//将newNode赋给node节点左孩子,插入完毕。
node.left = newNode;
} else {
//如果node节点左孩子不为空,则继续向左孩子的左孩子递归
insertNode(node.left, newNode);
}
} else {
if (node.right == null) {
node.right = newNode;
} else {
insertNode(node.right, newNode);
}
}
}
有了插入节点的方法,那么接下来我们就可以创建出一颗二叉搜索树来。
let bst = new BST();
bst.insert(11);
bst.insert(7);
bst.insert(15);
bst.insert(5);
bst.insert(3);
bst.insert(9);
bst.insert(8);
bst.insert(10);
bst.insert(13);
bst.insert(12);
bst.insert(14);
bst.insert(20);
bst.insert(18);
bst.insert(25);
bst.insert(6);
console.log(bst)
在控制台打印,我们就可以画出这个树的样子:
遍历一棵树是指访问树的每个节点并对它们进行某种操作的过程。访问树的所有节点有三种方式:中序、先序和后序。
中序遍历是一种以上行顺序访问BST所有节点的遍历方式,也就是以从最小到最大的顺序访问所有节点。中序遍历的一种应用就是对树进行排序操作。中序遍历的执行顺序是先访问节点的左侧子节点,然后访问节点本身,最后是右侧子节点,其遍历路径如下图所示:
我们编写midOrderTraverse方法实现中序遍历树,该方法收一个回调函数作为参数。回调函数用来定义我们对遍历到的每个节点进行的操作。
// 中序遍历
midOrderTraverse(callback) {
midOrderTraverseNode(this.root, callback);
}
同时,为了递归方便,编写一个辅助函数midOrderTraverseNode:
// 中序遍历辅助函数
function midOrderTraverseNode(node, callback) {
if (node !== null) {
midOrderTraverseNode(node.left, callback);
callback(node);
midOrderTraverseNode(node.right, callback);
}
}
接下来,我们就可以测试一下我们编写代码的功能:以中序遍历上文构建好的二叉搜索树,并打印出每个节点的值。
//打印节点值得函数
function printNode(node) {
console.log(node.value);
}
bst.midOrderTraverse(printNode) //中序遍历
//输出结果:
//3 5 6 7 8 9 10 11 12 13 14 15 18 20 25
先序遍历是以优先于后代节点的顺序访问每个节点的。先序遍历的一种应用是打印一个结构化的文档。先序遍历会先访问节点本身,然后再访问它的左侧子节点,最后是右侧子节点,其遍历路径如下图所示:
同中序遍历一样,先序遍历还是需要一个辅助函数:
// 先序遍历
preOrderTraverse(callback){
preOrderTraverseNode(this.root,callback)
}
// 先序遍历辅助函数
function preOrderTraverseNode(node,callback){
if (node !== null) {
callback(node);
preOrderTraverseNode(node.left, callback);
preOrderTraverseNode(node.right, callback);
}
}
测试:
//打印节点值得函数
function printNode(node) {
console.log(node.value);
}
bst.preOrderTraverse(printNode) //先序遍历
//输出结果:
//11 7 5 3 6 9 8 10 15 13 12 14 20 18 25
后序遍历则是先访问节点的后代节点,再访问节点本身。后序遍历的一种应用是计算一个目录和它的子目录中所有文件所占空间的大小。后序遍历会先访问左侧子节点,然后是右侧子节点,最后是父节点本身。其遍历路径如下图所示:
后序遍历还是需要一个辅助函数:
// 后序遍历
lastOrderTraverse(callback){
lastOrderTraverseNode(this.root,callback)
}
// 后序遍历辅助函数
function lastOrderTraverseNode(node,callback){
if (node !== null) {
lastOrderTraverseNode(node.left, callback);
lastOrderTraverseNode(node.right, callback);
callback(node);
}
}
测试:
//打印节点值得函数
function printNode(node) {
console.log(node.value);
}
bst.lastOrderTraverse(printNode) //先序遍历
//输出结果:
//3 6 5 8 10 9 7 12 14 13 18 25 20 15 11
通过以上,你会发现,中序、先序和后序遍历的实现方式是很相似的,唯一不同的是访问节点本身、访问左子节点、访问右子节点的顺序。
我们可以这样记忆:
以节点本身为参考,
我们知道,在二叉搜索树中,左子节点的值永远小于右子节点的值,所以,树的最小值一定是树的最后一层最左侧的节点,而树的最大值一定是树的最后一层最右侧的节点。
所以,搜索树中的最小值和最大值即就是搜索树中的最后一层最左侧节点和最右侧节点,代码如下:
// 查找树中节点值最小的节点
minNodeInTree(node){
if (node) {
while (node && node.left) {
node = node.left;
}
return node.value;
} else {
return null;
}
}
// 查找树中节点值最大的节点
maxNodeInTree(node){
if (node) {
while (node && node.right) {
node = node.right;
}
return node.value;
} else {
return null;
}
}
(未完待续。。。)
原生JS实现二叉搜索树(Binary Search Tree)
标签:结果 ima 遍历路径 llb 顺序 binary javascrip .com 最大
原文地址:https://www.cnblogs.com/wangjiachen666/p/10155507.html