码迷,mamicode.com
首页 > 编程语言 > 详细

基于python的机器学习实现日元币对人民币汇率预测

时间:2019-01-03 00:43:33      阅读:499      评论:0      收藏:0      [点我收藏+]

标签:data-   square   das   显示   dynamic   设置   tensor   中文   bat   

## 导入所需的包

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

 

tf.reset_default_graph()

plt.rcParams[‘font.sans-serif‘] = ‘SimHei‘ ##设置字体为SimHei显示中文

plt.rcParams[‘axes.unicode_minus‘] = False ##设置正常显示符号

 

## 导入所需数据

df = pd.read_csv(‘日元-人民币.csv‘,encoding=‘gbk‘,engine=‘python‘)

df[‘时间‘] = pd.to_datetime(df[‘时间‘],format=‘%Y/%m/%d‘)

df = df.sort_values(by=‘时间‘)

df.head()

 

## 用折线图展示数据

plt.figure(figsize=(12,8))

plt.title(‘1999年1月1日到2018年8月21日最高价数据曲线‘)

plt.plot(df[‘time‘],df[‘高‘])

plt.show()

 

### 提取测试数据

data = df.loc[:,[‘time‘,‘高‘]]

 

## 标准化数据

data[‘高‘] = (data[‘高‘]-np.mean(data[‘高‘]))/np.std(data[‘高‘])

data[‘高(预)‘] = data[‘高‘].shift(-1)

data = data.iloc[:data.shape[0]-1]

data.columns = [‘时间‘,‘x‘,‘y‘]

data.head()

 

#获取最高价序列

data=np.array(df[‘高‘])

 

normalize_data=(data-np.mean(data))/np.std(data) #标准化

normalize_data=normalize_data[:,np.newaxis] #增加维度

 

#———————————————形成训练集——————————————————

#设置常量

time_step=20 #时间步

rnn_unit=10 #hidden layer units

batch_size=60 #每一批次训练多少个样例

input_size=1 #输入层维度

output_size=1 #输出层维度

lr=0.0006 #学习率

train_x,train_y=[],[] #训练集

for i in range(len(normalize_data)-time_step-1):

x=normalize_data[i:i+time_step]

y=normalize_data[i+1:i+time_step+1]

train_x.append(x.tolist())

train_y.append(y.tolist())

 

test_x = train_x[len(train_x)-31:len(train_x)-1]

test_y = train_y[len(train_y)-31:len(train_y)-1]

 

X=tf.placeholder(tf.float32, [None,time_step,input_size]) #每批次输入网络的tensor

Y=tf.placeholder(tf.float32, [None,time_step,output_size]) #每批次tensor对应的标签

 

#输入层、输出层权重、偏置

weights={

‘in‘:tf.Variable(tf.random_normal([input_size,rnn_unit])),

‘out‘:tf.Variable(tf.random_normal([rnn_unit,1]))

}

biases={

‘in‘:tf.Variable(tf.constant(0.1,shape=[rnn_unit,])),

‘out‘:tf.Variable(tf.constant(0.1,shape=[1,]))

}

 

def lstm(batch): #参数:输入网络批次数目

w_in=weights[‘in‘]

b_in=biases[‘in‘]

input=tf.reshape(X,[-1,input_size]) #需要将tensor转成2维进行计算,计算后的结果作为隐藏层的输入

input_rnn=tf.matmul(input,w_in)+b_in

input_rnn=tf.reshape(input_rnn,[-1,time_step,rnn_unit]) #将tensor转成3维,作为lstm cell的输入

cell=tf.nn.rnn_cell.BasicLSTMCell(rnn_unit)

init_state=cell.zero_state(batch,dtype=tf.float32)

 

 

output_rnn,final_states=tf.nn.dynamic_rnn(cell,input_rnn,initial_state=init_state, dtype=tf.float32) #output_rnn是记录lstm每个输出节点的结果,final_states是最后一个cell的结果

output=tf.reshape(output_rnn,[-1,rnn_unit]) #作为输出层的输入

w_out=weights[‘out‘]

b_out=biases[‘out‘]

pred=tf.matmul(output,w_out)+b_out

 

return pred,final_states

 

def train_lstm():

global batch_size

pred,_=lstm(batch_size)

 

#损失函数
loss=tf.reduce_mean(tf.square(tf.reshape(pred,[-1])-tf.reshape(Y, [-1])))

train_op=tf.train.AdamOptimizer(lr).minimize(loss)

saver=tf.train.Saver(tf.global_variables())

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

#重复训练100次

for i in range(100):

step=0

start=0

end=start+batch_size

while(end<len(train_x)): _,loss_=sess.run([train_op,loss],feed_dict={X:train_x[start:end],Y:train_y[start:end]})

start+=batch_size

end=start+batch_size

#每10步保存一次参数

if step%10==0:

print(i,step,loss_)

print("保存模型:",saver.save(sess,‘.\stock.model‘))

step+=1


 

def prediction():

pred,_=lstm(1) #预测时只输入[1,time_step,input_size]的测试数据

saver=tf.train.Saver(tf.global_variables())

with tf.Session() as sess:

#参数恢复

module_file = tf.train.latest_checkpoint(‘./‘)

saver.restore(sess, module_file)

#取训练集最后一行为测试样本。shape=[1,time_step,input_size]

prev_seq=train_x[-31]

predict=[]

#得到之后100个预测结果

for i in range(100):

next_seq=sess.run(pred,feed_dict={X:[prev_seq]})

predict.append(next_seq[-1])

#每次得到最后一个时间步的预测结果,与之前的数据加在一起,形成新的测试样本

prev_seq=np.vstack((prev_seq[1:],next_seq[-1]))

#以折线图表示结果

plt.figure()

plt.plot(list(range(len(normalize_data))), normalize_data, color=‘b‘)

plt.plot(list(range(len(normalize_data), len(normalize_data) + len(predict))), predict, color=‘r‘)

plt.show()

 

with tf.variable_scope(‘train‘):

train_lstm()

with tf.variable_scope(‘train‘,reuse=True):

prediction()

基于python的机器学习实现日元币对人民币汇率预测

标签:data-   square   das   显示   dynamic   设置   tensor   中文   bat   

原文地址:https://www.cnblogs.com/lybear/p/10211984.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!