标签:customer 活跃 tps http 生成 isa 表名 sphinx ESS
原文:MySQL分区表使用方法命令:
show plugins;
CREATE TABLE `customer_login_log` (
`customer_id` int(10) unsigned NOT NULL COMMENT '登录用户ID',
`login_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '用户登录时间',
`login_ip` int(10) unsigned NOT NULL COMMENT '登录IP',
`login_type` tinyint(4) NOT NULL COMMENT '登录类型:0未成功 1成功'
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户登录日志表'
PARTITION BY HASH(customer_id) PARTITIONS 4;
CREATE TABLE `customer_login_log` (
`customer_id` int(10) unsigned NOT NULL COMMENT '登录用户ID',
`login_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '用户登录时间',
`login_ip` int(10) unsigned NOT NULL COMMENT '登录IP',
`login_type` tinyint(4) NOT NULL COMMENT '登录类型:0未成功 1成功'
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户登录日志表'
PARTITION BY HASH(UNIX_TIMESTAMP(login_time)) PARTITIONS 4;
customer_login_log 表如果不分区,在物理磁盘上文件为
customer_login_log.frm # 存储表原数据信息
customer_login_log.ibd # Innodb数据文件
如果按上面的建HASH分区表,则有五个文件
customer_login_log.frm
customer_login_log#P#p0.ibd
customer_login_log#P#p1.ibd
customer_login_log#P#p2.ibd
customer_login_log#P#p3.ibd
使用起来和不分区是一样的,看起来只有一个数据库,其实有多个分区文件,比如我们要插入一条数据,不需要指定分区,MySQL会自动帮我们处理
查询
如果没有定义p3分区,当插入的customer_id大于29999时会报错,定义了则超过的数据都存入p3中
如果插入一条login_type为10的数据行,则会报错
按年份分区存储,所以用YEAR函数进行了转化
CREATE TABLE `customer_login_log` (
`customer_id` int(10) unsigned NOT NULL COMMENT '登录用户ID',
`login_time` DATETIME NOT NULL COMMENT '用户登录时间',
`login_ip` int(10) unsigned NOT NULL COMMENT '登录IP',
`login_type` tinyint(4) NOT NULL COMMENT '登录类型:0未成功 1成功'
) ENGINE=InnoDB
PARTITION BY RANGE (YEAR(login_time))(
PARTITION p0 VALUES LESS THAN (2017),
PARTITION p1 VALUES LESS THAN (2018),
PARTITION p2 VALUES LESS THAN (2019)
)
插入并查询数据
SELECT table_name,partition_name,partition_description,table_rows FROM
information_schema.`PARTITIONS` WHERE table_name = 'customer_login_log';
再插入2条18年的日志,会存入p2表中
之前说过建立分区表时,最好建立一个MAXVALUE的分区,这里之所以没有建立,是为了数据维护的方便,如果我们建立了MAXVALUE分区,很容易忽视一个问题,当我们2019年有的数据插入时,会自动存入那个MAXVALUE分区中,之后在做数据维护时会不方便,所以没有建立MAXVALUE分区
而是通过计划任务的方式,在每年年底的时候增加这个分区,比如我们现在在2018年年底,我们需要在日志表中为2019年建立日志分区,否则2019年的日志都会插入失败
我们可以通过下面语句
ALTER TABLE customer_login_log ADD PARTITION (PARTITION p3 VALUES LESS THAN(2020))
增加分区,并插入数据
假如我们现在要删除2016年到2017年间一年的数据,因为我们已经做了分区,所以只需要通过一条语句,删除p0分区即可
ALTER TABLE customer_login_log DROP PARTITION p0;
可以发现p0分区已被删除,且2016年的日志全部被清除了
我们可能有另一种需求对数据进行归档
Mysql版本>=5.7,归档分区历史数据非常方便,提供了一个交换分区的方法
CREATE TABLE `arch_customer_login_log` (
`customer_id` INT unsigned NOT NULL COMMENT '登录用户ID',
`login_time` DATETIME NOT NULL COMMENT '用户登录时间',
`login_ip` INT unsigned NOT NULL COMMENT '登录IP',
`login_type` TINYINT NOT NULL COMMENT '登录类型:0未成功 1成功'
) ENGINE=InnoDB ;
ALTER TABLE customer_login_log
exchange PARTITION p1 WITH TABLE arch_customer_login_log;
可以发现,原customer_login_log表中的2017年的数据(p1分区中的数据)已转移到了arch_customer_login_log表中,但是p1分区未删除,只是数据转移了,所以我们还需要执行DROP命令删除分区,以免有数据插入其中
最后我们将归档数据的存储引擎改为归档引擎,命令为
ALTER TABLE customer_login_log ENGINE=ARCHIVE;
使用归档引擎的好处是:它比Innodb所占用的空间更少,但是归档引擎只能进行查询操作,不能进行写操作
1.关于自动增长
myisam引擎的自动增长列必须是索引,如果是组合索引,自动增长可以不是第一列,他可以根据前面几列进行排序后递增。
innodb引擎的自动增长咧必须是索引,如果是组合索引也必须是组合索引的第一列。
2.关于主键
myisam允许没有任何索引和主键的表存在,
myisam的索引都是保存行的地址。
innodb引擎如果没有设定主键或者非空唯一索引,就会自动生成一个6字节的主键(用户不可见)
innodb的数据是主索引的一部分,附加索引保存的是主索引的值。
3.关于count()函数
myisam保存有表的总行数,如果select count(*) from table;会直接取出出该值
innodb没有保存表的总行数,如果使用select count(*) from table;就会遍历整个表,消耗相当大,但是在加了wehre 条件后,myisam和innodb处理的方式都一样。
4.全文索引
myisam支持 FULLTEXT类型的全文索引
innodb不支持FULLTEXT类型的全文索引,但是innodb可以使用sphinx插件支持全文索引,并且效果更好。(sphinx 是一个开源软件,提供多种语言的API接口,可以优化mysql的各种查询)
5.delete from table
使用这条命令时,innodb不会从新建立表,而是一条一条的删除数据,在innodb上如果要清空保存有大量数据的表,最 好不要使用这个命令。(推荐使用truncate table,不过需要用户有drop此表的权限)
6.索引保存位置
myisam的索引以表名+.MYI文件分别保存。
innodb的索引和数据一起保存在表空间里。
标签:customer 活跃 tps http 生成 isa 表名 sphinx ESS
原文地址:https://www.cnblogs.com/lonelyxmas/p/10237114.html