码迷,mamicode.com
首页 > 编程语言 > 详细

利用python 学习数据分析 (学习一)

时间:2019-01-10 21:44:56      阅读:212      评论:0      收藏:0      [点我收藏+]

标签:==   技术   0.11   传递   python   tps   img   量化   bsp   

内容学习自:

Python for Data Analysis, 2nd Edition        

就是这本技术分享图片

纯英文学的很累,对不对取决于百度翻译了

前情提要:

各种方法贴:

  https://www.cnblogs.com/baili-luoyun/p/10250177.html

    本内容主要讲的是

      数组和矢量的计算

 

    一: 创建数组

      传入内容(序列化对象),转化成数组

        np.array()

      1:单维数组 (和列表没什么两样)

1 单维数组
2 # data1 = [6, 7, 8, 9, 10, 1, 2]
3 # arr1 =np.array(data1)
4 # print(arr1)
>>>>
[ 6  7  8  9 10  1  2]

 

 

      2:多维数组

 

data2 =[[1,2,3,4],[5,6,7,8]]
arr2 =np.array(data2)
l =arr2.shape   #返回维度
print(arr2)
print(l)
>>>>>

[[1 2 3 4]
[5 6 7 8]]
(2, 4)

 

 

 

      3:系统内置函数np.arange(横,纵)

 

data3 =np.arange(1,15)
print(data3)
>>>>>

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14]

 

 

 

      4:生成对角线数组 

 

data4 =np.eye(3,3)
print(data4)


>>>

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

 

 

 

 

 

    二:数组之间的运算(矢量化运算可以直接参与赋值)

      1:矢量可以直接参运算

 

* 乘法

lis =[[1,2,3],[4,5,6]]
data1 =np.array(lis)
print(data1)
#矢量化运算可以直接参与运算
l2 =data1*data1
print(l2)

-减法
l3 =data1+data1
print(l3)



>>>>>

[[1 2 3]
[4 5 6]]
[[ 1 4 9]
[16 25 36]]
[[ 2 4 6]
[ 8 10 12]]

 

  

 

      2:数组与标量之间可以直接传递到数组的每个内容

 

l4 =1/data1
print(l4)

>>>>

[[1. 0.5 0.33333333]
[0.25 0.2 0.16666667]]

 

 

 

      3:数组相同维度的比较(维度不同则报错)

 

data2 =np.array([[3,2,1],[6,5,4]])
l4 =data1>data2
print(l4)
>>>>

[[False False  True]
 [False False  True]]

 

 

 

 

    三:数组的切片和索引

      1:一维数组

 

print(arr1[1])
print(arr1[4])
print(arr1[:4])
arr1[1]=888    #给对应索引位置换值
print(arr1)
arr1[:] =55    # 给所有索引位置换值
print(arr1)
>>>>>
2
5
[1 2 3 4]
[  1 888   3   4   5]
[55 55 55 55 55]

 

  

      2:多维数组:

 

arr2d =np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(arr2d)
print(arr2d[3])  #多维数组索引是一维数组
print(arr2d[1][2])    #一维数组以后切牌获得单个值
arr2d[0]=42        #多维数组单独索引赋值,则整个一维数组都换值
arr2d[0][0] =55
print(arr2d)              # 把多为数组都拆开单独赋值获得内容
l =arr2d[0:2]       #多维数组切片,可以
l =arr2d[:2,2]         #切完之后再,进行小切

l =arr2d[:2,1:]       #获取前二行后两列
l =arr2d[2,:2]
l1 =arr2d[1,:2]       #获取第二个前两列
l =arr2d[:3,:2]       #获取前三行前两列
l =arr2d[:,:1]         #多维数组,索引从1开始
print(l)
>>>

[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
[10 11 12]
6
[[55 42 42]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
[[55]
[ 4]
[ 7]
[10]]

 

 

 

 

技术分享图片

 

    五:布尔型索引

 

names =np.array([bob,bob,bob,bob,bob,apple,alan,sele])
data =np.random.randn(8,4)
# names ==‘bob‘
print(names==bob)   #字符串也可以进行比较返回一个bool值
print(names)
>>>>

[ True True True True True False False False]
[‘bob‘ ‘bob‘ ‘bob‘ ‘bob‘ ‘bob‘ ‘apple‘ ‘alan‘ ‘sele‘]

 

 

 

 

 

 

 

 

print(data)
print(data[names ==‘bob‘]) #有两个bob 所以返回行 #布尔型索数组长度,需要等于布尔型索引长度,
>>>>>

[[-0.3316016 1.78918492 -1.59222587 0.21469427]
[ 1.55247352 1.14508726 -0.68673629 -0.42648069]
[-0.95385141 -0.1938747 0.22302977 -1.25419395]
[ 0.09290589 0.26875941 -0.34120567 1.67205517]
[ 1.17781667 -0.83402007 -2.64528669 -0.70822941]
[ 0.34199013 1.81982055 0.60103061 0.39070584]
[-1.20352138 0.7618197 -1.29754963 1.19821404]
[ 0.84278983 -0.60723742 -0.73442051 -0.87391669]]
[[-0.3316016 1.78918492 -1.59222587 0.21469427]
[ 1.55247352 1.14508726 -0.68673629 -0.42648069]
[-0.95385141 -0.1938747 0.22302977 -1.25419395]
[ 0.09290589 0.26875941 -0.34120567 1.67205517]
[ 1.17781667 -0.83402007 -2.64528669 -0.70822941]]

 

 

 

 

 

 

 

print(data[names ==‘bob‘,2:])         #获取之后也可以切片
print(names!=‘bob‘)
print(data[~(names ==‘bob‘)])
>>>>>>>>>>

[[-1.05528931 -0.19176188]
[-1.55590721 0.43000376]
[ 1.3635074 0.75722279]
[ 2.80719722 0.3907232 ]
[ 0.3805182 -1.30951587]]
[False False False False False True True True]
[[ 0.64999255 -1.40220795 -0.11081563 0.51079912]
[ 1.24400895 -1.81700713 -0.24652383 1.20494275]
[-1.53308854 1.09828319 1.32899806 -0.86707369]]

 
 

 

 

 

 

利用python 学习数据分析 (学习一)

标签:==   技术   0.11   传递   python   tps   img   量化   bsp   

原文地址:https://www.cnblogs.com/baili-luoyun/p/10252385.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!