码迷,mamicode.com
首页 > 编程语言 > 详细

python_tensorflow_Django实现逻辑回归

时间:2019-01-11 11:31:13      阅读:178      评论:0      收藏:0      [点我收藏+]

标签:render   sam   ace   examples   http   eth   abs   dom   creat   

1.工程概要

技术分享图片

2.data文件以及input_data文件准备

链接:https://pan.baidu.com/s/1EBNyNurBXWeJVyhNeVnmnA
提取码:4nnl
3.logisstic_mnist.py

def logistic_regression():

    import tensorflow as tf
    import matplotlib.pyplot as plt
    from app01 import input_data
    import numpy as np
    from PIL import Image


    print(‘Download and Extract MNIST dataset‘)
    mnist = input_data.read_data_sets(‘app01/data/‘,  one_hot=True)
    print("type of ‘mnist‘ is %s" % (type(mnist)))
    print("number of train data is %d" % (mnist.train.num_examples))
    print("number of test data is %d" % (mnist.test.num_examples))

    trainimg = mnist.train.images

    for img in trainimg:
        for i in range(0, 748):
            if img[i] < 0.6:
                img[i] = 0
            else:
                img[i] = 1

    trainlabel = mnist.train.labels

    testimg = mnist.test.images

    for img in testimg:
        for i in range(0, 748):
            if img[i] < 0.6:
                img[i] = 0
            else:
                img[i] = 1

    testlabel = mnist.test.labels

    print("type of the ‘trainimg‘ is %s" % (type(trainimg)))
    print("type of the ‘trainlabel‘ is %s" % (type(trainlabel)))
    print("type of the ‘testimg‘ is %s" % (type(testimg)))
    print("type of the ‘testlabel‘ is %s" % (type(testlabel)))
    print("shape of the ‘trainimg‘ is %s" % (trainimg.shape,))
    print("shape of the ‘trainlabel‘ is %s" % (trainlabel.shape,))
    print("shape of the ‘testimg‘ is %s" % (testimg.shape,))
    print("shape of the ‘testlabel‘ is %s" % (testlabel.shape,))

    print(‘how dose the training data look like?‘)

    nsample = 5
    randidx = np.random.randint(trainimg.shape[0], size=nsample)

    for i in randidx:
        curr_img = np.reshape(trainimg[i, :], (28, 28))
        curr_label = np.argmax(trainlabel[i, :])
        plt.matshow(curr_img, cmap=plt.get_cmap(‘gray‘))
        plt.title(""+str(i)+"th Training Data"+"Label is"+str(curr_label))
        print(""+str(i)+"th Training Data"+"Label is"+str(curr_label))
        plt.show()

    print(‘Batch Learning?‘)
    batch_size = 100
    batch_xs, batch_ys = mnist.train.next_batch(batch_size)
    print("type of ‘batch_xs‘ is %s" % (type(batch_xs)))
    print("type of ‘batch_ys‘ is %s" % (type(batch_ys)))
    print("shape of ‘batch_xs‘ is %s" % (batch_xs.shape, ))
    print("shape of ‘batch_ys‘ is %s" % (batch_ys.shape, ))

    # print(trainlabel[0])

    x = tf.placeholder(‘float‘, [None, 784])
    y = tf.placeholder(‘float‘, [None, 10])
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))

    actv = tf.nn.softmax(tf.matmul(x, W) + b)
    cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(actv), reduction_indices=1))
    learning_rate = 0.01

    optm = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

    pred = tf.equal(tf.argmax(actv, 1), tf.argmax(y, 1))
    accr = tf.reduce_mean(tf.cast(pred, ‘float‘))
    init = tf.global_variables_initializer()
    sess = tf.InteractiveSession()

    training_epochs = 50
    batch_size = 100
    display_step = 5
    sess = tf.Session()
    sess.run(init)

    for epoch in range(training_epochs):
        avg_cost = 0.
        num_batch = int(mnist.train.num_examples/batch_size)
        for i in range(num_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            feeds = {x: batch_xs, y: batch_ys}
            sess.run(optm, feed_dict=feeds)

            avg_cost += sess.run(cost, feed_dict=feeds)/num_batch
        if epoch % display_step == 0:
            feeds_train = {x: batch_xs, y: batch_ys}
            feeds_test = {x: mnist.test.images, y: mnist.test.labels}
            train_acc = sess.run(accr, feed_dict=feeds_train)
            test_acc = sess.run(accr, feed_dict=feeds_test)
            print("Epoch: %03d/%03d cost: %.9f train_acc: %.3f test_acc: %.3f" % (epoch, training_epochs, avg_cost, train_acc, test_acc))

        W_out = W.eval(session=sess)
        b_out = b.eval(session=sess)
    res_dict = {‘W‘: W_out, ‘b‘: b_out}

    print(‘DONE‘)
    return res_dict

4.views.py

from django.shortcuts import render
from app01 import logistic_mnist as lomni
from app01 import save_and_load_dict as save_load
# Create your views here.


def index(request):
    if request.method == ‘GET‘:
        return render(request, ‘logistic_regression.html‘, {‘range‘: range(0, 28)})
    if request.method == ‘POST‘:
        choice = request.GET.get(‘n‘)
        print(‘choice:‘, choice)
        if choice == ‘1‘:
            res_dict = lomni.logistic_regression()
            save_load.save_obj(res_dict, ‘res_dict‘)
            return render(request, ‘logistic_regression.html‘, {‘resdict‘: res_dict})
        if choice == ‘2‘:
            import numpy as np
            my_test = []
            for row in range(0, 28):
                for line in range(0, 28):
                    if request.POST.get(‘(‘+str(row)+‘,‘+str(line)+‘)‘) == None:
                        my_test.append(0)
                    else:
                        my_test.append(1)
            my_test = np.array(my_test)
            print(‘my_test:‘, my_test)
            res_dict = save_load.load_obj(‘res_dict‘)
            W = np.array(res_dict[‘W‘])
            b = np.array(res_dict[‘b‘])
            # print(W, b)
            pred = np.argmax(np.matmul(my_test, W)+b)


            return render(request, ‘logistic_regression.html‘, {‘resdict‘: res_dict, ‘pred‘:pred})

        if choice == ‘3‘:
            import numpy as np

            from PIL import Image
            img = Image.open(‘app01/image/sharped5.png‘)
            img_array = np.array(img)
            img_array = np.zeros(784).reshape(28, 28)
            print(img_array + 0)
            return render(request, ‘logistic_regression.html‘, {‘img_array‘: img_array+0, ‘range‘: range(0, 28)})

5.urls.py

"""logistic_regression URL Configuration

The `urlpatterns` list routes URLs to views. For more information please see:
    https://docs.djangoproject.com/en/2.1/topics/http/urls/
Examples:
Function views
    1. Add an import:  from my_app import views
    2. Add a URL to urlpatterns:  path(‘‘, views.home, name=‘home‘)
Class-based views
    1. Add an import:  from other_app.views import Home
    2. Add a URL to urlpatterns:  path(‘‘, Home.as_view(), name=‘home‘)
Including another URLconf
    1. Import the include() function: from django.urls import include, path
    2. Add a URL to urlpatterns:  path(‘blog/‘, include(‘blog.urls‘))
"""
from django.contrib import admin
from django.urls import path
from app01 import views
urlpatterns = [
    path(‘admin/‘, admin.site.urls),
    path(‘index/‘, views.index),
]

6.logistic_regression.html

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
    <style>

    </style>
</head>
<body>
<form action="/index/?n=1" method="post">
    {% csrf_token %}
    <input type="submit" value="逻辑回归训练">
</form>

{% if resdict != none %}
<div>
    <p>训练结果:</p>
    <p>W:{{ resdict.W }}</p>
    <p>b:{{ resdict.b }}</p>
</div>
{% endif %}

<form action="/index/?n=2" method="post">
 {% csrf_token %}
    <table border="1">
        <thead></thead>
        <tbody >
            {% for row in range %}
                <tr>
                    {% for line in range %}
                    <td>
                        <input type="checkbox"  name="({{ row }},{{ line }})" class="paint">
                    </td>
                    {% endfor %}
                </tr>
            {% endfor %}
        </tbody>
    </table>

<input type="submit" value="进行手写识别">
</form>
{% if pred != none %}
    <div>
        <p>
            检测结果是{{ pred }}
        </p>
    </div>
{% endif %}


<form action="/index/?n=3" method="post">
 {% csrf_token %}
    <input type="submit" value="开始检测目标文件夹中的手写字体!">
    <p>{{ img }}</p>

</form>


</body>
</html>

7.save_and_load_dict.py

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
    <style>

    </style>
</head>
<body>
<form action="/index/?n=1" method="post">
    {% csrf_token %}
    <input type="submit" value="逻辑回归训练">
</form>

{% if resdict != none %}
<div>
    <p>训练结果:</p>
    <p>W:{{ resdict.W }}</p>
    <p>b:{{ resdict.b }}</p>
</div>
{% endif %}

<form action="/index/?n=2" method="post">
 {% csrf_token %}
    <table border="1">
        <thead></thead>
        <tbody >
            {% for row in range %}
                <tr>
                    {% for line in range %}
                    <td>
                        <input type="checkbox"  name="({{ row }},{{ line }})" class="paint">
                    </td>
                    {% endfor %}
                </tr>
            {% endfor %}
        </tbody>
    </table>

<input type="submit" value="进行手写识别">
</form>
{% if pred != none %}
    <div>
        <p>
            检测结果是{{ pred }}
        </p>
    </div>
{% endif %}


<form action="/index/?n=3" method="post">
 {% csrf_token %}
    <input type="submit" value="开始检测目标文件夹中的手写字体!">
    <p>{{ img }}</p>

</form>


</body>
</html>

8.graying.py

import sys
print(sys.argv[0])

import os
path_curr = os.path.abspath(‘.‘)
path_up = os.path.abspath(‘..‘)
print(path_up)

threshold = 140

table = []
for a in range(256):

    if a > threshold:
        table.append(1)

    else:
        table.append(0)

from PIL import Image
for i in range(0, 10):
    img = Image.open(‘image/‘+str(i)+‘.png‘)

    Img = img.convert(‘L‘)

    Img.save(‘image/grey‘+str(i)+‘.png‘)

    photo = Img.point(table, ‘1‘)

    photo.save(‘image/sharped‘+str(i)+‘.png‘)

  

 

python_tensorflow_Django实现逻辑回归

标签:render   sam   ace   examples   http   eth   abs   dom   creat   

原文地址:https://www.cnblogs.com/CK85/p/10253753.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!