码迷,mamicode.com
首页 > Web开发 > 详细

人脸识别-性别识别finetune

时间:2019-01-15 00:50:49      阅读:578      评论:0      收藏:0      [点我收藏+]

标签:查看   ase   examples   tun   生成   scipy   efi   gre   包含   

本文用记录基于Caffe的人脸性别识别过程。基于imdb-wiki模型做finetune,imdb-wiki数据集合模型可从这里下载:https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/。

准备训练环境

(1)准备OS:Ubuntu16.04

(2)安装Nvidia GPU Driver

https://www.nvidia.com/Download/index.aspx?lang=en-us

(3)安装CUDA

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

查看cuda版本的方法:

cat /usr/local/cuda/version.txt

(4)安装cnDNN(可选)

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html

查看cudnn版本的方法:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

(5)安装Docker(可选)

https://docs.docker.com/install/linux/docker-ce/ubuntu/#set-up-the-repository

(6)安装Nvidia Docker(可选)

https://github.com/NVIDIA/nvidia-docker

(7)准备Docker Image(可选)

进入Container的方式之一:,

nvidia-docker exec -it $ContainerID /bin/bash 

用nvidia-docker ps查看ContainerID。 

 准备模型及训练数据集

(1)     下载Imdb-wiki模型

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/gender.caffemodel

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/gender_train.prototxt

如果下载了imdb-wiki的数据集,可以通过如下方式读取数据集的描述文件:

import scipy.io as sio

mat_contents = sio.loadmat(‘wiki.mat‘)

(2)     下载celeba数据集

CelebA是CelebFaces Attribute的缩写,意即名人人脸属性数据集,其包含10,177个名人身份的202,599张人脸图片,每张图片都做好了特征标记,包含人脸bbox标注框、5个人脸特征点坐标以及40个属性标记,CelebA由香港中文大学开放提供,广泛用于人脸相关的计算机视觉训练任务,可用于人脸属性标识训练、人脸检测训练以及landmark标记等,可以从http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html下载img_align_celeba.zip即可。

(3)     生成celeba数据集的训练和测试描述文件

删除list_attr_celeba文件第一行后,提取性别属性:

cat list_attr_celeba | awk -F ‘ ’ ‘{print $1,$2}’ >gender.txt

计算图片文件数量:

cat list_attr_celeba | wc -l

对gender.txt文件行做shuffle:

       cat gender.txt | awk  -F"\3" ‘BEGIN{srand();}{value=int(rand()*图片文件数量); print value"\3"$0 }‘ | sort | awk -F"\3" ‘{print $2}‘ >> shuffled

       生成训练集:

       head -n 图片文件数量*0.9 shuffled > train.txt

       tail -n 图片文件数量*0.1 shuffled > test.txt

修改图片路径可能用到的VI命令:1,$ s/old/new/g

 (4) 为了更好的识别亚洲人的性别,还可以通过爬取等方式收集标注来补充亚洲人的数据。

 训练模型

(1)准备solver.prototxt

Solver文件解释可参考:

https://github.com/BVLC/caffe/wiki/Solver-Prototxt

(更全面)https://zhuanlan.zhihu.com/p/48462756

net: “gender.prototxt”
test_iter: 100
test_interval: 500
test_compute_loss: true
base_lr: 0.00001
momentum: 0.95
type: “SGD”
weight_decay: 0.0005
lr_policy: “step”
gamma: 0.9
stepsize: 200
display: 100
max_iter: 20000
snapshot: 2000
snapshot_prefix: “gender”
solver_mode: GPU

(2) 修改gender.prototxt

name: "VGG_ILSVRC_16_layers"
layer {
  top: "data"
  type: "ImageData"
  top: "label"
  name: "data"
  transform_param {
    mirror: true
    crop_size: 224
    mean_file: "imagenet_mean.binaryproto"
  }
  image_data_param {
    source: "train.txt"
    batch_size: 32
    new_height: 256
    new_width: 256 
  }
  include: { phase: TRAIN }
}
layer {
  top: "data"
  top: "label"
  name: "data"
  type: "ImageData"
  image_data_param {
    new_height: 256
    new_width: 256
    source: "train.txt"
    batch_size: 10
  }
  transform_param {
    crop_size: 224
    mirror: false
    mean_file: "imagenet_mean.binaryproto"
  }
  include: { phase: TEST }
}
layer {
  bottom: "data"
  top: "conv1_1"
  name: "conv1_1"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  type: "Convolution"
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv1_1"
  top: "conv1_1"
  name: "relu1_1"
  type: "ReLU"
}
layer {
  bottom: "conv1_1"
  top: "conv1_2"
  name: "conv1_2"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  type: "Convolution"
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv1_2"
  top: "conv1_2"
  name: "relu1_2"
  type: "ReLU"
}
layer {
  bottom: "conv1_2"
  top: "pool1"
  name: "pool1"
  type: "Pooling"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom: "pool1"
  top: "conv2_1"
  name: "conv2_1"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  type: "Convolution"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv2_1"
  top: "conv2_1"
  name: "relu2_1"
  type: "ReLU"
}
layer {
  bottom: "conv2_1"
  top: "conv2_2"
  name: "conv2_2"

 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  type: "Convolution"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv2_2"
  top: "conv2_2"
  name: "relu2_2"
  type: "ReLU"
}
layer {
  bottom: "conv2_2"
  top: "pool2"
  name: "pool2"
  type: "Pooling"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom: "pool2"
  top: "conv3_1"
  name: "conv3_1"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  type: "Convolution"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv3_1"
  top: "conv3_1"
  name: "relu3_1"
  type: "ReLU"
}
layer {
  bottom: "conv3_1"
  top: "conv3_2"
  name: "conv3_2"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  type: "Convolution"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv3_2"
  top: "conv3_2"
  name: "relu3_2"
  type: "ReLU"
}
layer {
  bottom: "conv3_2"
  top: "conv3_3"
  name: "conv3_3"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  type: "Convolution"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv3_3"
  top: "conv3_3"
  name: "relu3_3"
  type: "ReLU"
}
layer {
  bottom: "conv3_3"
  top: "pool3"
  name: "pool3"
  type: "Pooling"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom: "pool3"
  top: "conv4_1"
  name: "conv4_1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }

  type: "Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv4_1"
  top: "conv4_1"
  name: "relu4_1"
  type: "ReLU"
}
layer {
  bottom: "conv4_1"
  top: "conv4_2"
  name: "conv4_2"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  type: "Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv4_2"
  top: "conv4_2"
  name: "relu4_2"
  type: "ReLU"
}
layer {
  bottom: "conv4_2"
  top: "conv4_3"
  name: "conv4_3"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }

  type: "Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv4_3"
  top: "conv4_3"
  name: "relu4_3"
  type: "ReLU"
}
layer {
  bottom: "conv4_3"
  top: "pool4"
  name: "pool4"
  type: "Pooling"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom: "pool4"
  top: "conv5_1"
  name: "conv5_1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }

  type: "Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv5_1"
  top: "conv5_1"
  name: "relu5_1"
  type: "ReLU"
}
layer {
  bottom: "conv5_1"
  top: "conv5_2"
  name: "conv5_2"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  type: "Convolution"
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv5_2"
  top: "conv5_2"
  name: "relu5_2"
  type: "ReLU"
}
layer {
  bottom: "conv5_2"
  top: "conv5_3"
  name: "conv5_3"
  type: "Convolution"
 param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
  }
}
layer {
  bottom: "conv5_3"
  top: "conv5_3"
  name: "relu5_3"
  type: "ReLU"
}
layer {
  bottom: "conv5_3"
  top: "pool5"
  name: "pool5"
  type: "Pooling"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  bottom: "pool5"
  top: "fc6"
  name: "fc6"
 param {
    lr_mult: 10
    decay_mult: 1
  }
  param {
    lr_mult: 20
    decay_mult: 0
  }
  type: "InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
layer {
  bottom: "fc6"
  top: "fc6"
  name: "relu6"
  type: "ReLU"
}
layer {
  bottom: "fc6"
  top: "fc6"
  name: "drop6"
  type: "Dropout"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  bottom: "fc6"
  top: "fc7"
  name: "fc7"
 param {
    lr_mult: 10
    decay_mult: 1
  }
  param {
    lr_mult: 20
    decay_mult: 0
  }
  type: "InnerProduct"
  inner_product_param {
    num_output: 4096
  }
}
layer {
  bottom: "fc7"
  top: "fc7"
  name: "relu7"
  type: "ReLU"
}
layer {
  bottom: "fc7"
  top: "fc7"
  name: "drop7"
  type: "Dropout"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  bottom: "fc7"
  top: "fc8-2"
  name: "fc8-2"
 param {
    lr_mult: 10
    decay_mult: 1
  }
  param {
    lr_mult: 20
    decay_mult: 0
  }
  type: "InnerProduct"
  inner_product_param {
    num_output: 2
  weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  bottom: "fc8-2"
  bottom: "label"
  name: "loss"
  type: "SoftmaxWithLoss"
  include: { phase: TRAIN }
}

layer {
  name: "prob"
  type: "Softmax"
  bottom: "fc8-2"
  top: "prob"
    include {
    phase: TEST
  }
}
layer {
  name: "accuracy_train_top01"
  type: "Accuracy"
  bottom: "fc8-2"
  bottom: "label"
  top: "accuracy_train_top01"
  include {
    phase: TEST
  }
}

imagenet_mean.binaryproto 文件的生成可参考https://github.com/BVLC/caffe/blob/master/examples/imagenet/make_imagenet_mean.sh

或直接从网上下载。

(3)启动训练

caffe train –sovler=pathto/solver.prototxt –weight=pathtto/gender.caffemodel –gpu all

(4)使用训练的模型

实际应用中,我们首先采用人脸检测技术检测人脸,将图片中的人脸取裁剪出来送入训练好的模型进行性别识别。人脸检测技术可以采用dlib库,dlib库人脸检测支持根据具体应用场景进行finetune。

人脸识别-性别识别finetune

标签:查看   ase   examples   tun   生成   scipy   efi   gre   包含   

原文地址:https://www.cnblogs.com/dskit/p/10269502.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!