码迷,mamicode.com
首页 > 数据库 > 详细

Spark SQL

时间:2019-01-20 23:38:40      阅读:830      评论:0      收藏:0      [点我收藏+]

标签:alt   def   文本   记录   implicit   main   tail   order   整理   

一、SparkSQL介绍

    1、概述:
    sparkSQL是spark用来处理结构化数据的一个模块。
    sparkSQL提供了一个编程的抽象叫做DataFrame并且作为我们分布式SQL的查询引擎
    
    2、作用:用来处理结构化数据,先将非结构化的数据转成结构化数据。
    
    3、SparkSQL提供了两种编程模型:
    1)SQL的方式 select * from user;
    2)DataFrame方式(DSL)
    HQL:将SQL转换为mr任务
    SparkSQL:将SQL转换为RDD,效率快
    
    4、特点:
    1)容易整合 spark
    2)统一数据的访问方式
    3)标准的数据连接
    支持JDBC/ODBC,可以对接BI工具
    4)兼容HIVE    

二、DataFrame介绍

    与RDD类似,DataFrame也是一个分布式数据容器。
    SparkSQL属于SQL解析引擎。在spark,将SQL解析RDD。注意:这个RDD比较特殊,是带有schema信息的RDD。
    这个RDD就叫DataFrame。
    DataFrame像数据库的二维表格(有行有列表描述),它除了数据之外还记录了数据的结构信息(schema)。
    
    与RDD区别:
    DataFrame:存放了结构化数据的描述信息
    RDD:存储文本数据、二进制、音频、视频...

三、SQL风格

1、SqlTest1

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}

/**
  * spark2.x
  * SQL风格
  */
object SqlTest1 {
  def main(args: Array[String]): Unit = {
    //1.构建SparkSession
    val sparkSession = SparkSession.builder().appName("SqlTest1")
      .master("local[2]")
      .getOrCreate()

    //2.创建RDD
    val dataRdd: RDD[String] = sparkSession.sparkContext
      .textFile("hdfs://192.168.146.111:9000/user.txt")

    //3.切分数据
    val splitRdd: RDD[Array[String]] = dataRdd.map(_.split("\t"))

    //4.封装数据
    val rowRdd = splitRdd.map(x => {
      val id = x(0).toInt
      val name = x(1).toString
      val age = x(2).toInt
      //封装一行数据
      Row(id, name, age)
    })

    //5.创建schema(描述DataFrame信息) sql=表
    val schema: StructType = StructType(List(
      StructField("id", IntegerType, true),
      StructField("name", StringType, true),
      StructField("age", IntegerType, true)
    ))

    //6.创建DataFrame
    val userDF: DataFrame = sparkSession.createDataFrame(rowRdd, schema)

    //7.注册表
    userDF.registerTempTable("user_t")

    //8.写sql
    val uSql: DataFrame = sparkSession.sql("select * from user_t order by age")

    //9.查看结果  show databases;
    uSql.show()

    //10.释放资源
    sparkSession.stop()
  }
}

 2、user.txt

1    zhangsan    18
2    lisi    23
3    tom    26
4    mary    16
5    zhangsanfeng    128

3、结果

技术分享图片

四、toDF使用

scala> val rdd = sc.textFile("hdfs://192.168.146.111:9000/user.txt").map(_.split("\t"))
rdd: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at <console>:24

scala> case class User(id:Int,name:String,age:Int)
defined class User

scala> val userRdd = rdd.map(x => User(x(0).toInt,x(1),x(2).toInt))
userRdd: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[4] at map at <console>:28

scala> val udf = userRdd.toDF
udf: org.apache.spark.sql.DataFrame = [id: int, name: string ... 1 more field]

scala> udf.show()
+---+------------+---+
| id|        name|age|
+---+------------+---+
|  1|    zhangsan| 18|
|  2|        lisi| 23|
|  3|         tom| 26|
|  4|        mary| 16|
|  5|zhangsanfeng|128|
+---+------------+---+


scala> udf.select("name","age").show()
+------------+---+
|        name|age|
+------------+---+
|    zhangsan| 18|
|        lisi| 23|
|         tom| 26|
|        mary| 16|
|zhangsanfeng|128|
+------------+---+


scala> udf.filter(col("id") <= 3).show()
+---+--------+---+
| id|    name|age|
+---+--------+---+
|  1|zhangsan| 18|
|  2|    lisi| 23|
|  3|     tom| 26|
+---+--------+---+


scala> udf.filter(col("id") > 3).show()
+---+------------+---+
| id|        name|age|
+---+------------+---+
|  4|        mary| 16|
|  5|zhangsanfeng|128|
+---+------------+---+


scala> udf.groupBy(("name")).count.show()
+------------+-----+                                                            
|        name|count|
+------------+-----+
|zhangsanfeng|    1|
|        mary|    1|
|    zhangsan|    1|
|         tom|    1|
|        lisi|    1|
+------------+-----+


scala> udf.sort("age").show()
+---+------------+---+
| id|        name|age|
+---+------------+---+
|  4|        mary| 16|
|  1|    zhangsan| 18|
|  2|        lisi| 23|
|  3|         tom| 26|
|  5|zhangsanfeng|128|
+---+------------+---+


scala> udf.orderBy("age").show()
+---+------------+---+
| id|        name|age|
+---+------------+---+
|  4|        mary| 16|
|  1|    zhangsan| 18|
|  2|        lisi| 23|
|  3|         tom| 26|
|  5|zhangsanfeng|128|
+---+------------+---+


scala> udf.registerTempTable("user_t")
warning: there was one deprecation warning; re-run with -deprecation for details

scala> spark.sqlContext.sql("select * from user_t").show()
+---+------------+---+
| id|        name|age|
+---+------------+---+
|  1|    zhangsan| 18|
|  2|        lisi| 23|
|  3|         tom| 26|
|  4|        mary| 16|
|  5|zhangsanfeng|128|
+---+------------+---+


scala> spark.sqlContext.sql("select name,age from user_t where age>18").show()
+------------+---+
|        name|age|
+------------+---+
|        lisi| 23|
|         tom| 26|
|zhangsanfeng|128|
+------------+---+


scala> 

五、DSL风格

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

/**
  * DSL风格
  */
object SqlTest2 {
  def main(args: Array[String]): Unit = {
    //1.创建sparkSession
    val sparkSession: SparkSession = SparkSession.builder()
      .appName("SqlTest2")
      .master("local[2]")
      .getOrCreate()

    //2.创建rdd
    val dataRDD: RDD[String] = sparkSession.sparkContext
      .textFile("hdfs://192.168.146.111:9000/user.txt")

    //3.切分数据
    val splitRDD: RDD[Array[String]] = dataRDD.map(_.split("\t"))
    val rowRDD: RDD[Row] = splitRDD.map(x => {
      val id = x(0).toInt
      val name = x(1).toString
      val age = x(2).toInt
      //Row代表一行数据
      Row(id, name, age)
    })

    val schema: StructType = StructType(List(
      //结构字段
      StructField("id", IntegerType, true),
      StructField("name", StringType, true),
      StructField("age", IntegerType, true)
    ))

    //4.rdd转换为dataFrame
    val userDF: DataFrame = sparkSession.createDataFrame(rowRDD, schema)

    //5.DSL风格 查询年龄大于18 rdd dataFrame dataSet
    import sparkSession.implicits._
    val user1DF: Dataset[Row] = userDF.where($"age" > 18)
    user1DF.show()

    //6.关闭资源
    sparkSession.stop()
  }
}

结果:

技术分享图片

六、WordCount

1、SqlWordCount

import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}

object SqlWordCount {
  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val sparkSession: SparkSession = SparkSession.builder()
      .appName("SqlWordCount")
      .master("local[2]")
      .getOrCreate()

    //2.加载数据 使用dataSet处理数据 dataSet是一个更加智能的rdd,默认有一列叫value
    val datas: Dataset[String] = sparkSession.read
      .textFile("hdfs://192.168.146.111:9000/words.txt")

    //3.sparkSql 注册表/注册视图 rdd.flatMap
    import sparkSession.implicits._
    val word: Dataset[String] = datas.flatMap(_.split("\t"))

    //4.注册视图
    word.createTempView("wc_t")

    //5.执行sql wordCount
    val r: DataFrame = sparkSession
      .sql("select value as word,count(*) sum from wc_t group by value order by sum desc")

    r.show()
    sparkSession.stop()
  }
}

2、words.txt

hello    world
hello    China
hello    Beijing
haha    heihei

3、结果

技术分享图片

七、Join操作

1、JoinDemo

import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}

/**
  * SQL方式
  */
object JoinDemo {
  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val sparkSession: SparkSession = SparkSession.builder().appName("JoinDemo")
      .master("local[2]").getOrCreate()

    import sparkSession.implicits._

    //2.直接创建dataSet
    val datas1: Dataset[String] = sparkSession
      .createDataset(List("1 Tom 18", "2 John 22", "3 Mary 16"))

    //3.整理数据
    val dataDS1: Dataset[(Int, String, Int)] = datas1.map(x => {
      val fields: Array[String] = x.split(" ")
      val id = fields(0).toInt
      val name = fields(1).toString
      val age = fields(2).toInt
      //元组输出
      (id, name, age)
    })

    val dataDF1: DataFrame = dataDS1.toDF("id", "name", "age")


    //2.创建第二份数据
    val datas2: Dataset[String] = sparkSession
      .createDataset(List("18 young", "22 old"))

    val dataDS2: Dataset[(Int, String)] = datas2.map(x => {
      val fields: Array[String] = x.split(" ")
      val age = fields(0).toInt
      val desc = fields(1).toString
      //元组输出
      (age, desc)
    })

    //3.转化为dataFrame
    val dataDF2: DataFrame = dataDS2.toDF("dage", "desc")

    //4.注册视图
    dataDF1.createTempView("d1_t")
    dataDF2.createTempView("d2_t")

    //5.写sql(join)
    val r = sparkSession.sql("select name,desc from d1_t join d2_t on age = dage")

    //6.触发任务
    r.show()

    //7.关闭资源
    sparkSession.stop()
  }
}

2、结果

技术分享图片

3、JoinDemo1

import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}

object JoinDemo1 {
  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val sparkSession: SparkSession = SparkSession.builder()
      .appName("JoinDemo1")
      .master("local[2]").getOrCreate()

    import sparkSession.implicits._

    //2.直接创建dataSet
    val datas1: Dataset[String] = sparkSession
      .createDataset(List("1 Tom 18", "2 John 22", "3 Mary 16"))

    //3.整理数据
    val dataDS1: Dataset[(Int, String, Int)] = datas1.map(x => {
      val fields: Array[String] = x.split(" ")
      val id = fields(0).toInt
      val name = fields(1).toString
      val age = fields(2).toInt
      //元组输出
      (id, name, age)
    })

    val dataDF1: DataFrame = dataDS1.toDF("id", "name", "age")

    //2.创建第二份数据
    val datas2: Dataset[String] = sparkSession
      .createDataset(List("18 young", "22 old"))

    val dataDS2: Dataset[(Int, String)] = datas2.map(x => {
      val fields: Array[String] = x.split(" ")
      val age = fields(0).toInt
      val desc = fields(1).toString
      //元组输出
      (age, desc)
    })

    //3.转化为dataFrame
    val dataDF2: DataFrame = dataDS2.toDF("dage", "desc")

    //默认方式 inner join
    //val r: DataFrame = dataDF1.join(dataDF2, $"age" === $"dage")
    //val r: DataFrame = dataDF1.join(dataDF2, $"age" === $"dage", "left")
    //val r: DataFrame = dataDF1.join(dataDF2, $"age" === $"dage", "right")
    //val r: DataFrame = dataDF1.join(dataDF2, $"age" === $"dage", "left_outer")
    val r: DataFrame = dataDF1.join(dataDF2, $"age" === $"dage", "cross")

    r.show()

    //7.关闭资源
    sparkSession.stop()
  }
}

4、结果

技术分享图片

 

Spark SQL

标签:alt   def   文本   记录   implicit   main   tail   order   整理   

原文地址:https://www.cnblogs.com/areyouready/p/10296607.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有 京ICP备13008772号-2
迷上了代码!