码迷,mamicode.com
首页 > 编程语言 > 详细

动态规划----最长公共子序列(C++实现)

时间:2019-01-26 00:19:44      阅读:273      评论:0      收藏:0      [点我收藏+]

标签:拖拽   长度   margin   resize   asc   ems   lan   fun   1.3   

最长公共子序列

  • 题目描述:给定两个字符串s1 s2 … sn和t1 t2 … tm 。求出这两个字符串的最长公共子序列的长度。字符串s1 s2 … sn的子序列指可以表示为技术分享图片技术分享图片技术分享图片 { i1 < i2 < … < ik }的序列。
  • 输入样例

       2
       asdf
       adfsd
       123abc
       abc123abc

  • 输出样例

        3

        6

  • 解题思路:

这道题是被称为最长公共子序列的问题(LCS,Longest Common Subsequence)的著名问题。这道题我们是用动态规划的思想来做的。我们先拿第一组测试用例,asdf 与 adfsd 作为例子来看一下这道题的思路。上图!!

j / i 0 1(a) 2(s) 3(d) 4(f)
0 0 0 0 0 0
1(a) 0 1 1 1 1
2(d) 0 1 1 2 2
3(f) 0 1 1 2 3
4(s) 0 1 2 2 3
5(d) 0 1 2 2 3

做这种题,我们要用一个二维数组(dp[MAX_N][MAX_N])来存放每一个状态的值。如图所示,横向代表i、纵向代表j,那么,每一个网格的值是怎么来的呢。在这里我们把每一个状态即dp[i][j] 看做 s1 … si 和 t1 … tj 的LCS的长度。由此我们,s1 … s(i+1) 和 t1 … t(j+1) 对应的公共子列长度可能是:

当s(i+1) == t(j+1),在 s1 … si 和 t1 … tj 的公共子列末尾追加上s(i+1) 。

否则则可能是 s1 … si 和 t1 … t(j+1) 的公共子列或者 s1 … s(i+1) 和 t1 … tj 的公共子列最大值。

对应以下一个公式:

技术分享图片技术分享图片?

有了上面的公式我们就可以写代码了:

//最长公共子序列
#include<iostream>
#include<string>
#include<cstring>
#include<stdlib.h>
#define MAX 1001 
using namespace std;
int dp[MAX][MAX];
int main()
{
	int N;
	cin >> N;
	while(N--)
	{
		string a,b;
		cin >> a >> b;
		memset(dp,0,sizeof(dp));
		int len_a=a.size(),len_b=b.size(); 
		for(int i=0;i<len_a;i++)
		{
			for(int j=0;j<len_b;j++)
			{
				if(a.at(i)==b.at(j))
					dp[i+1][j+1]=dp[i][j]+1;
				else 
					dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);
			}
		}
		cout << dp[len_a][len_b] << endl;
		a.clear();
		b.clear();
	}
	return 0;
}
技术分享图片

动态规划----最长公共子序列(C++实现)

标签:拖拽   长度   margin   resize   asc   ems   lan   fun   1.3   

原文地址:https://www.cnblogs.com/lesileqin/p/10322353.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!