码迷,mamicode.com
首页 > Web开发 > 详细

AlexNet卷积神经网络【前向反馈】

时间:2019-01-27 12:57:36      阅读:171      评论:0      收藏:0      [点我收藏+]

标签:实现   网络层   ini   数据量   避免   top   des   运用   port   

1.代码实现

  1 # -*- coding: utf-8 -*-
  2 """
  3 Created on Wed Nov 14 17:13:05 2018
  4 
  5 @author: zhen
  6 """
  7 
  8 from datetime import datetime
  9 import math
 10 import time
 11 import tensorflow as tf
 12 
 13 batch_size = 32
 14 num_batchs = 100
 15 
 16 def print_activations(t):
 17     print(t.op.name, " ", t.get_shape().as_list())
 18     
 19 def inference(images):
 20     parameters = []
 21     with tf.name_scope(conv1) as scope:
 22         kernel = tf.Variable(tf.truncated_normal([11,11, 3, 64],dtype=tf.float32, stddev=1e-1), name=weights)
 23         conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding=SAME)
 24         biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name=biases)
 25         bias = tf.nn.bias_add(conv, biases)
 26         conv1 = tf.nn.relu(bias, name=scope)
 27         print_activations(conv1)
 28         parameters += [kernel, biases]
 29     lrn1 = tf.nn.lrn(conv1, depth_radius=4, bias=1.0, alpha=0.001/9, beta=0.75, name=lrn1)
 30     pool1 = tf.nn.max_pool(lrn1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding=VALID, name=pool1)
 31     print_activations(pool1)
 32 
 33     with tf.name_scope(conv2) as scope:
 34         kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 128], dtype=tf.float32, stddev=1e-1, name=weights))
 35         conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding=SAME)
 36         biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32), trainable=True, name=biases)
 37         bias = tf.nn.bias_add(conv, biases)
 38         conv2 = tf.nn.relu(bias, name=scope)
 39         parameters += [kernel, biases]
 40         print_activations(conv2)
 41         
 42     lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001/9, beta=0.75, name=lrn2)
 43     pool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding=VALID, name=pool2)
 44     print_activations(pool2)         
 45         
 46     with tf.name_scope(conv3) as scope:
 47         kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 256], dtype=tf.float32, stddev=1e-1, name=weights))
 48         conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding=SAME)
 49         biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name=biases)
 50         bias = tf.nn.bias_add(conv, biases)
 51         conv3 = tf.nn.relu(bias, name=scope)
 52         parameters += [kernel, biases]
 53         print_activations(conv3)
 54         
 55     with tf.name_scope(conv4) as scope:
 56         kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 128], dtype=tf.float32, stddev=1e-1, name=weights))
 57         conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding=SAME)
 58         biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32), trainable=True, name=biases)
 59         bias = tf.nn.bias_add(conv, biases)
 60         conv4 = tf.nn.relu(bias, name=scope)
 61         parameters += [kernel, biases]
 62         print_activations(conv4)
 63         
 64     with tf.name_scope(conv5) as scope:
 65         kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 128], dtype=tf.float32, stddev=1e-1, name=weights))
 66         conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding=SAME)
 67         biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32), trainable=True, name=biases)
 68         bias = tf.nn.bias_add(conv, biases)
 69         conv5 = tf.nn.relu(bias, name=scope)
 70         parameters += [kernel, biases]
 71         print_activations(conv5)
 72         
 73     pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding=VALID, name=pool5)
 74     print_activations(pool5)
 75     
 76     return pool5, parameters
 77 
 78 # 评估AlexNet每轮计算时间
 79 def fit_date(session, target, info_string):
 80     num_steps_burn_in = 10 # 初始计算轮数
 81     total_duration = 0.0
 82     total_duration_squared = 0.0
 83     
 84     for i in range(num_batchs + num_steps_burn_in):
 85         start_time = time.time()
 86         session.run(target)
 87         duration = time.time() - start_time
 88         if i >= num_steps_burn_in:
 89             if not i % 10:
 90                 print(%s:step %d, duration=%.3f%(datetime.now(), i - num_steps_burn_in, duration))
 91             total_duration += duration
 92             total_duration_squared += duration * duration
 93     mn = total_duration / num_batchs
 94     vr = total_duration_squared / num_batchs - mn * mn
 95     sd = math.sqrt(vr)                
 96     print(%s:%s across %d steps,%.3f +/- %.3f sec / batch%(datetime.now(), info_string, num_batchs, mn, sd))
 97     
 98 def fit_benchmark():
 99     with tf.Graph().as_default():
100         image_size = 224
101         images = tf.Variable(tf.random_normal([batch_size, image_size, image_size, 3], dtype=tf.float32, stddev=1e-1))
102         pool5, parameters = inference(images)
103         init = tf.global_variables_initializer()
104         sess = tf.Session()
105         sess.run(init)
106         
107         fit_date(sess, pool5, "Forward")
108         objective = tf.nn.l2_loss(pool5)
109         grad = tf.gradients(objective, parameters)
110         fit_date(sess, grad, "Forward-backward")
111         
112 fit_benchmark()

2.结果

conv1   [32, 56, 56, 64]
pool1   [32, 27, 27, 64]
conv2   [32, 27, 27, 128]
pool2   [32, 13, 13, 128]
conv3   [32, 13, 13, 256]
conv4   [32, 13, 13, 128]
conv5   [32, 13, 13, 128]
pool5   [32, 6, 6, 128]
2019-01-27 10:51:37.551617:step 0, duration=1.625
2019-01-27 10:51:54.082824:step 10, duration=1.766
2019-01-27 10:52:10.582787:step 20, duration=1.641
2019-01-27 10:52:27.051502:step 30, duration=1.672
2019-01-27 10:52:43.507558:step 40, duration=1.625
2019-01-27 10:52:59.913772:step 50, duration=1.625
2019-01-27 10:53:16.245750:step 60, duration=1.672
2019-01-27 10:53:32.511337:step 70, duration=1.625
2019-01-27 10:53:48.901938:step 80, duration=1.609
2019-01-27 10:54:05.183145:step 90, duration=1.625
2019-01-27 10:54:19.917492:Forward across 100 steps,1.640 +/- 0.031 sec / batch
2019-01-27 10:55:47.146016:step 0, duration=7.719
2019-01-27 10:57:04.602639:step 10, duration=7.766
2019-01-27 10:58:26.594245:step 20, duration=9.842
2019-01-27 11:00:01.957195:step 30, duration=8.391
2019-01-27 11:01:35.103007:step 40, duration=10.073
2019-01-27 11:03:07.656318:step 50, duration=8.988
2019-01-27 11:04:31.844207:step 60, duration=8.590
2019-01-27 11:06:01.173490:step 70, duration=9.422
2019-01-27 11:07:28.737373:step 80, duration=10.635
2019-01-27 11:09:03.830375:step 90, duration=8.653
2019-01-27 11:10:19.836018:Forward-backward across 100 steps,8.804 +/- 0.817 sec / batch

3.分析

  1、AlexNet是比赛分类项目的2012年冠军,top5错误率16.4%,8层神经网络。

  2、AlexNet中包含了几个比较新的技术点,首次在CNN中成功应用了Relu、Dropout、 Lrn等Trick。

  3、运用Relu,解决Sigmoid在网络层次较深时的梯度弥散。

  4、训练Dropout,随机忽略一些神经元,避免过拟合。

  5、使用重叠的最大池化,此前CNN普遍平均池化,最大池化避免平均池化的模糊化效果。

  6、提出了Lrn层,局部神经元活动创建竞争机制,响应比较大的值变得更大,抑制其他反馈小的神经元,增强泛化能力。
  7、数据增强,随机地从256*256的原始图像中截取224*224大小的区域,以及水平翻转的镜像,相当于增加了【(256-224)^2】*2=2048倍的数据量。

  注意:没有数据增强,仅靠原始的数据量,参数众多的CNN会陷入过拟合中。

AlexNet卷积神经网络【前向反馈】

标签:实现   网络层   ini   数据量   避免   top   des   运用   port   

原文地址:https://www.cnblogs.com/yszd/p/10325847.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!