码迷,mamicode.com
首页 > Web开发 > 详细

【题解】JSOIWC2019 Round 5

时间:2019-01-31 20:46:22      阅读:192      评论:0      收藏:0      [点我收藏+]

标签:一个   bubuko   分时   struct   log   flag   erro   额外   error   

题面:

技术分享图片

技术分享图片

技术分享图片

技术分享图片

技术分享图片

技术分享图片

技术分享图片

题解:

T1:

算法1:

枚举每个灯塔的方向,并分别判断是否有解。时间复杂度O(K*4^K)。

预计得分:50-70分

算法2:

不难发现,当k≥4的时候一定有解,将最靠左的两个下面的朝右上、上面的朝右下。最右边的两个做同样的处理。不难发现这样一定可以覆盖整个场地。

与算法1结合后可以期望获得100分

# include <bits/stdc++.h>
using namespace std;
namespace Base{
    # define mr make_pair
    typedef long long ll;
    typedef double db;
    const int inf = 0x3f3f3f3f, INF = 0x7fffffff;
    const ll  infll = 0x3f3f3f3f3f3f3f3fll, INFll = 0x7fffffffffffffffll;
    template<typename T> void read(T &x){
        x = 0; int fh = 1; double num = 1.0; char ch = getchar();
        while (!isdigit(ch)){ if (ch == '-') fh = -1; ch = getchar(); }
        while (isdigit(ch)){ x = x * 10 + ch - '0'; ch = getchar(); }
        if (ch == '.'){
            ch = getchar();
            while (isdigit(ch)){num /= 10; x = x + num * (ch - '0'); ch = getchar();}
        }
        x = x * fh;
    }
    template<typename T> void chmax(T &x, T y){x = x < y ? y : x;}
    template<typename T> void chmin(T &x, T y){x = x > y ? y : x;}
}
using namespace Base;

const int K = 110;
struct Point{
    int x, y;
}p[K], t[K], a[K], b[K];
int k, n, mu[K], flag;
void check(){
    int lim = (1 << k);
    ll sum = 0;
    for (int i = 1; i < lim; i++){
        int num = 0;
        int ax = 0, ay = 0, bx = n - 1, by = n - 1;
        for (int j = 1; j <= k; j++)
            if ((i & (1 << (j - 1))) != 0){
                num++;
                ax = max(a[j].x, ax);
                ay = max(a[j].y, ay);
                bx = min(b[j].x, bx);
                by = min(b[j].y, by);
            }
        if (ax <= bx && ay <= by)
            sum = sum + mu[num] * 1ll * (bx - ax) * (by - ay);
    }
    if (sum == 1ll * (n - 1) * (n - 1)) flag = true;
}

void dfs(int x){
    if (x > k){
        check();
        return;
    }
    for (int i = 0; i < 4; i++){
        a[x].x = min(p[x].x, t[i].x);
        a[x].y = min(p[x].y, t[i].y);
        b[x].x = max(p[x].x, t[i].x);
        b[x].y = max(p[x].y, t[i].y);
        dfs(x + 1);
    }   
}
int main(){
    freopen("lighting.in", "r", stdin);
    freopen("lighting.out", "w", stdout);
    mu[0] = -1;
    for (int i = 1; i < K; i++) mu[i] = mu[i - 1] * (-1);
    int op; read(op);
    while (op--){
        read(k); read(n);
        for (int i = 1; i <= k; i++)
            read(p[i].x), read(p[i].y);
        flag = false;
        if (k > 4) {
            printf("yes\n");
            continue;
        }
        t[0].x = 0, t[0].y = 0; 
        t[1].x = n - 1, t[1].y = 0;
        t[2].x = 0, t[2].y = n - 1;
        t[3].x = n - 1, t[3].y = n - 1;
        dfs(1);
        if (flag == true)
            printf("yes\n");
            else printf("no\n");
    }
    return 0;
}

T2:

算法0:

对于如何还原串中的一段,可以用类似线段树查询的方式做,时间复杂度O(N+R-L)。

算法1:

枚举每个玩家的出拳方法。时间复杂度O(3^(2^N)*(2^N))。

预计得分:20分

算法2:

不难发现,当我们确定最后的获胜者后,我们可以倒推出每一轮比赛的情况。同时我们可以正着推出每一层每个出拳方式的字典序大小关系。所以,当我们确定了最后的情况。我们可以花O(2^N)的时间还原出初始情况。

预计得分:40分

算法3:

其实我们不用还原出整个过程,只要知道底层每种出拳方式有多少个即可。用高精度计算即可。

预计得分:70分(其实取模就可以过了)

算法4:

再次观察后,我们发现。在一层中,每种出拳方式的数量的差不大于1。当我们有差和层数时,我们可以O(1)判断一个状态是否合法。

预计得分:100分

# include <bits/stdc++.h>

namespace Base{
    # define mr make_pair
    typedef long long ll;
    typedef double db;
    const int inf = 0x3f3f3f3f, INF = 0x7fffffff;
    const ll  infll = 0x3f3f3f3f3f3f3f3fll, INFll = 0x7fffffffffffffffll;
    template<typename T> void read(T &x){
        x = 0; int fh = 1; double num = 1.0; char ch = getchar();
        while (!isdigit(ch)){ if (ch == '-') fh = -1; ch = getchar(); }
        while (isdigit(ch)){ x = x * 10 + ch - '0'; ch = getchar(); }
        if (ch == '.'){
            ch = getchar();
            while (isdigit(ch)){num /= 10; x = x + num * (ch - '0'); ch = getchar();}
        }
        x = x * fh;
    }
    template<typename T> void chmax(T &x, T y){x = x < y ? y : x;}
    template<typename T> void chmin(T &x, T y){x = x > y ? y : x;}
}
using namespace Base;

const int N = 300010, P = 998244353;

struct INT{
    int n[N], len;
    void GetFromSt(char *st){
        len = strlen(st);
        for (int i = 0; i < len; i++) n[i] = st[len - i - 1] - '0';
    }
}num[4], tmp;
bool operator >=(INT &x, INT &y){
    if (x.len > y.len) return true;
    if (x.len < y.len) return false;
    for (int i = x.len - 1; i >= 0; i--){
        if (x.n[i] > y.n[i]) return true;
        if (x.n[i] < y.n[i]) return false;
    }
    return true;
}
INT operator -(INT a, INT &b){
    for (int i = 0; i < a.len; i++)
        a.n[i] -= b.n[i];
    for (int i = 0; i < a.len; i++)
        if (a.n[i] < 0) a.n[i] += 10, a.n[i + 1] -= 1;
    while (a.len > 0 && a.n[a.len - 1] == 0) a.len--;
    return a;
}
int n, op;
const int to[] = {-1, 0, 2, 1, 4, 5, 3, -1};
ll h[N][3], mul[N];
int rk[N][3], tnp[3];
char st[N], mp[3], l[N], r[N];
void error(){
    printf("-1\n");
    exit(0);
}
void solve(int id, int now, int tag){
    if (id == 0){
        printf("%c", mp[now]);
        return;
    }
    int nowl = now, nowr = (now + 1) % 3;
    if (rk[id - 1][nowl] > rk[id - 1][nowr]) std::swap(nowl, nowr);
    if ((tag & 1) != 0){
        if (r[id] == '0' && (tag & 2) == 0)
            solve(id - 1, nowl, 1);
            else solve(id - 1, nowl, 3);
    }
    else {
        if (l[id] == '0'){
            if (r[id] == '0' && (tag & 2) == 0)
                solve(id - 1, nowl, 0);
                else solve(id - 1, nowl, 2);
        }
    }
    if ((tag & 2) != 0){
        if (l[id] == '1' && (tag & 1) == 0)
            solve(id - 1, nowr, 2);
            else solve(id - 1, nowr, 3);
    }
    else {
        if (r[id] == '1'){
            if (l[id] == '1' && (tag & 1) == 0)
                solve(id - 1, nowr, 0);
                else solve(id - 1, nowr, 1);
        }
    }
}
int main(){
    freopen("rsp.in", "r", stdin);
    freopen("rsp.out", "w", stdout);
    read(n); read(op);
    scanf("\n%s", st); num[1].GetFromSt(st);
    scanf("\n%s", st); num[2].GetFromSt(st);
    scanf("\n%s", st); num[0].GetFromSt(st);
    num[3] = num[0]; tmp.len = 1; tmp.n[0] = 2;
    if (num[3] >= num[1]) num[3] = num[1];
    if (num[3] >= num[2]) num[3] = num[2];
    num[0] = num[0] - num[3]; if (num[0] >= tmp) error();
    num[1] = num[1] - num[3]; if (num[1] >= tmp) error();
    num[2] = num[2] - num[3]; if (num[2] >= tmp) error();
    int tag = (num[0].n[0]) + (num[1].n[0] << 1) + (num[2].n[0] << 2);
    tag = to[tag];
    tag = ((tag - n) % 6 + 6) % 6;
    tag = tag / 2;
    rk[0][0] = 0, rk[0][1] = 1, rk[0][2] = 2;
    h[0][0] = 'P', h[0][1] = 'R', h[0][2] = 'S'; mul[0] = 233;
    for (int i = 1; i <= n; i++){
        mul[i] = mul[i - 1] * mul[i - 1] % P;
        rk[i][0] = std::min(rk[i - 1][0], rk[i - 1][1]) * 3 + std::max(rk[i - 1][0], rk[i - 1][1]);
        rk[i][1] = std::min(rk[i - 1][1], rk[i - 1][2]) * 3 + std::max(rk[i - 1][1], rk[i - 1][2]);
        rk[i][2] = std::min(rk[i - 1][2], rk[i - 1][0]) * 3 + std::max(rk[i - 1][2], rk[i - 1][0]);
        for (int j = 0; j < 3; j++) tnp[j] = (rk[i][j] > rk[i][0]) + (rk[i][j] > rk[i][1]) + (rk[i][j] > rk[i][2]);
        for (int j = 0; j < 3; j++){
            rk[i][j] = tnp[j];
            if (rk[i - 1][j] < rk[i - 1][(j + 1) % 3]) 
                h[i][j] = (h[i - 1][j] + h[i - 1][(j + 1) % 3] * mul[i - 1]) % P;
                else h[i][j] = (h[i - 1][(j + 1) % 3] + h[i - 1][j] * mul[i - 1]) % P;
        }
    }
    if (op != 2) printf("%lld\n", h[n][tag]);
    if (op == 1) exit(0);
    scanf("\n%s", l + 1);
    for (int i = 1; i <= n / 2; i++) std::swap(l[i], l[n - i + 1]);
    scanf("\n%s", r + 1);
    for (int i = 1; i <= n / 2; i++) std::swap(r[i], r[n - i + 1]);
    mp[0] = 'P', mp[1] = 'R', mp[2] = 'S';
    solve(n, tag, 0);
    printf("\n");
    return 0;
}

T3:

算法1:

k=1时随便做做,预计得分0-10

算法2:

n≤1000, k≤4,dp统计答案,复杂度O(nvk),

预计得分10。

以下所有多项式的均为卷积(不会啊qaq)。

算法3:

考虑生成函数,以Vi为下标,数量为系数建立多项式f1,那么f1f1就是选两个的方案数。但是这样会有重复,(a,b)与(b,a)会算2次,同时会把(a,a)算进来,那么我们建立多项式f2表示一个物品取两次。那么当k=2时,ans=(f1f1-f2)/2;

预计额外得分20

算法4:

考虑算法3的拓展,记多项式f3为一个物品取三次,那么根据容斥原理,k=3时ans=(f1f1f1-3f2f1+2f3)/6,f2f1表示其中有两个或以上的物品相同,那么在f1f1f1中,一个f2f1会出现三次,即(a,a,b),(a,b,a),(b,a,a),f2f1中也会有f3出现,所以要减去三个f3,但是f1f1f1中本身还有一个f3所以还要减去一个。

预计额外得分30

算分5:

考虑进一步拓展,形式无非就f1f1f1f1,f2f2,f3f1,f2f1f1,f4这几种情况,剩下的问题就是配容斥系数,因为k只有4容斥系数可以手算出来。最终答案是:
Ans=(f1
f1f1f1+8f3f1+3f2f2-6f2f1f1-6f4)/24

预计额外得分40

将算法1,3,4,5拼在一起即可得到满分,时间复杂度O(V log V)

# include <bits/stdc++.h>
# define    ll      long long
using namespace std;

const int T = 100001, N = 600001;  
ll ans[N];
int read(){
    int tmp=0, fh=1; char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-') fh=-1; ch=getchar();}
    while (ch>='0'&&ch<='9'){tmp=tmp*10+ch-'0'; ch=getchar();}
    return tmp*fh;
}
namespace Transform{
    const int P = 998244353, G = 3;
    int power(int x, int y){
        int i = x; x = 1;
        while (y > 0){
            if (y % 2 == 1) x = 1ll * i * x % P;
            i = 1ll * i * i % P;
            y /= 2;
        }
        return x;
    }
    void NTT(int *a, int l, int tag){
        for (int i = 0, j = 0; i < l; i++){
            if (i > j) swap(a[i], a[j]);
            for (int k = (l >> 1); (j ^= k) < k; k >>= 1);
        }
        for (int i = 1; i < l; i <<= 1){
            int wn = power(G, (P - 1) / (i * 2));
            if (tag == -1) wn = power(wn, P - 2);
            for (int j = 0; j < l; j += i + i){
                int w = 1;
                for (int k = 0; k < i; k++, w = 1ll * w * wn % P){
                    int x = a[k + j], y = 1ll * w * a[k + j + i] % P;
                    a[k + j] = (x + y) % P, a[k + j + i] = (x - y + P) % P; 
                }
            }
        }
        if (tag == -1){
            int in = power(l, P - 2);
            for (int i = 0; i < l; i++) a[i] = 1ll * a[i] * in % P;
        }
    }
}
using namespace Transform; 
int num1[N], num2[N], num3[N], num4[N], now1[N], now2[N], now3[N], now4[N], len, nn, n, m, k;
void print(){
    int sum = 0; 
    for (int i = 0; i < N; i++)
        sum = sum ^ (1ll * ans[i] * i % P);
    printf("%d\n", sum);  
}
int main(){
    freopen("energy.in","r",stdin);
    freopen("energy.out","w",stdout);
    int inv2 = power(2, P - 2), inv6 = power(6, P - 2), inv24 = power(24, P - 2);
    n = read(), k = read(); 
    for (int i = 1; i <= n; i++) num1[read()]++;
    for (int i = 1; i <= T; i++) num2[i * 2]= num1[i], num3[i * 3] = num1[i], num4[i * 4] = num1[i];
    len = T * 4 + 1;
    nn = 1; while (nn < len) nn <<= 1;
    if (k == 1){
        for (int i = 0; i < nn; i++) ans[i] = num1[i];
        print();
        return 0;
    }
    
    if (k == 2){
        NTT(num1, nn, 1);
        for (int i = 0; i < nn; i++) now1[i] = 1ll * num1[i] * num1[i] % P;
        NTT(now1, nn, -1); 
        for (int i = 0; i < nn; i++) ans[i] = 1ll * (now1[i] - num2[i] + P) * inv2 % P;
        print();
        return 0;
    }   
    
    if (k == 3){
        NTT(num1, nn, 1); NTT(num2, nn, 1);
        for (int i = 0; i < nn; i++) now2[i] = 1ll * num2[i] * num1[i] % P;
        NTT(now2, nn, -1);
        for (int i = 0; i < nn; i++) now1[i] = 1ll * num1[i] * num1[i] % P * num1[i] % P;
        NTT(now1, nn, -1);
        for (int i = 0; i < nn; i++) ans[i] = (1ll * (now1[i] - 3ll * now2[i] + 2ll * num3[i]) % P * inv6 % P + P) % P;
        print();
        return 0;
    }
    
    if (k == 4){
        NTT(num1, nn, 1); NTT(num2, nn, 1); NTT(num3, nn, 1);
        for (int i = 0; i < nn; i++) now1[i] = 1ll * num1[i] * num1[i] % P * num1[i] % P * num1[i] % P;
        NTT(now1, nn, -1);
        for (int i = 0; i < nn; i++) now2[i] = 1ll * num3[i] * num1[i] % P;
        NTT(now2, nn, -1);
        for (int i = 0; i < nn; i++) now3[i] = 1ll * num2[i] * num2[i] % P;
        NTT(now3, nn, -1);
        for (int i = 0; i < nn; i++) now4[i] = 1ll * num2[i] * num1[i] % P * num1[i] % P;
        NTT(now4, nn, -1);
        for (int i = 0; i < nn; i++) ans[i] = (1ll * (now1[i] + 8ll * now2[i] + 3ll * now3[i] - 6ll * now4[i] - 6ll *num4[i]) * inv24 % P + P) % P;
        print();
        return 0;
    }
    return 0;
}

我觉得这很不提高膜你赛qaq(还是我太菜了)

【题解】JSOIWC2019 Round 5

标签:一个   bubuko   分时   struct   log   flag   erro   额外   error   

原文地址:https://www.cnblogs.com/yzhang-rp-inf/p/10343189.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!