标签:oid href class sdoi2011 mat etc 计算 复杂 val
BSGS,全称\(Baby Step Giant Step\),是用于求解离散对数的一种算法。
就是用来求\(A^x \equiv B (mod\ p)\) 的x这么一种算法……
理论知识是:在[0,p)之内是一定有解的,因为指数模的周期性。即\(A^x\)对p的模随x变化有周期性,最大周期不超过p。首先,余数只可能有p个元素,所以x取不超过p个值必定出现相同的余数。根据同余的性质,只要找到两个余数相同的,剩下的全部乘以\(A^k,k\)为整数,所以\(A^n \equiv A^{x+n}\)对于所有x都成立。
朴素算法是枚举0~p-1。
如何改进呢?我们考虑把数分组,每组大小为\(n = \sqrt{p}\),每组\(m = \frac{p}{n}\)个数。
对于每组的询问,我们组内的答案可以看作:\(A^{im-y} \equiv B (mod\ p)\)
移项一下就有:\(A^{im} \equiv BA^y (mod\ p)\)
我们枚举\(0~m-1\),计算所有的\(BA^y\),存进hash表,之后枚举\(1~n\)计算\(A^{im}\)的值,在hash表中找答案即可。
时间复杂度\(O(\sqrt{n})\)
然而这个算法只适用于……\(gcd(A,p) = 1\),即二者互质的情况。否则此时\(A^{-1}\)不存在,就不能把答案看作\(A^{im-y}\)
解决的方法是预先处理成二者互质。
我们一直把方程同除\(A,p\)的公约数就行了。如果中途某一次B除不开就是无解的,否则一直除,得到\(B_n = \frac{A^n}{d_1d_2…d^n}A^{x-n} + p_ny\),令\(D = \frac{A^n}{d_1d_2…d^n}\),此时必存在D的逆元,所以式子变为\(A^{x-n} \equiv B_nD^{-1} (mod\ p_n)\),求解即可。
这有个三合一的板子题。
SDOI2011 计算器
#include<bits/stdc++.h>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar(‘\n‘)
#define I inline
using namespace std;
typedef long long ll;
const int M = 200005;
const int mod = 999979;
int read()
{
int ans = 0,op = 1;char ch = getchar();
while(ch < ‘0‘ || ch > ‘9‘) {if(ch == ‘-‘) op = -1;ch = getchar();}
while(ch >= ‘0‘ && ch <= ‘9‘) ans = ans * 10 + ch - ‘0‘,ch = getchar();
return ans * op;
}
int T,K,y,z,p;
struct Hash
{
int sta[M],top,head[M<<3],num[M],val[M],nxt[M],ecnt;
void init(){ecnt = 0;while(top) head[sta[top--]] = 0;}
void insert(int x,int y)
{
int h = x % mod;
for(int i = head[h];i;i = nxt[i]) if(num[i] == x) {val[i] = y;return;}
if(!head[h]) sta[++top] = h;
nxt[++ecnt] = head[h],head[h] = ecnt;
num[ecnt] = x,val[ecnt] = y;
}
int query(int x)
{
int h = x % mod;
for(int i = head[h];i;i = nxt[i]) if(num[i] == x) return val[i];
return -1;
}
}H;
int gcd(int a,int b) {return (!b) ? a : gcd(b,a%b);}
int mul(int a,int b,int t){return 1ll * a * b % t;}
int qpow(int a,int b,int t)
{
int g = 1;
while(b)
{
if(b&1) g = mul(g,a,t);
a = mul(a,a,t),b >>= 1;
}
return g;
}
int exgcd(int a,int b,int &x,int &y)
{
if(!b){x = 1,y = 0;return a;}
int d = exgcd(b,a%b,y,x);
y -= a / b * x;
return d;
}
int inv(int a,int b)
{
int x,y;
exgcd(a,b,x,y);
return (x % b + b) % b;
}
int BSGS(int a,int b,int c)
{
int cnt = 0,G,d = 1;
while((G = gcd(a,c)) != 1)
{
if(b % G) return -1;
cnt++,b /= G,c /= G,d = mul(d,a/G,c);
}
b = mul(b,inv(d,c),c);
H.init();
int s = sqrt(c),p = 1;
rep(i,0,s-1)
{
if(p == b) return i + cnt;
H.insert(mul(p,b,c),i),p = mul(p,a,c);
}
int q = p,t;
for(int i = s;i <= c + s - 2;i += s)
{
t = H.query(q);
if(t != -1) return i - t + cnt;
q = mul(q,p,c);
}
return -1;
}
int main()
{
T = read(),K = read();
while(T--)
{
y = read(),z = read(),p = read();
if(K == 1) printf("%d\n",qpow(y,z,p));
if(K == 2)
{
if(z % gcd(y,p)) {printf("Orz, I cannot find x!\n");continue;}
int X,Y;
int d = exgcd(y,p,X,Y);
p /= d;
printf("%d\n",(mul(X,z/d,p) + p) % p);
}
if(K == 3)
{
y %= p,z %= p;
int ans = BSGS(y,z,p);
(ans == -1) ? printf("Orz, I cannot find x!\n") : printf("%d\n",ans);
}
}
return 0;
}
标签:oid href class sdoi2011 mat etc 计算 复杂 val
原文地址:https://www.cnblogs.com/captain1/p/10351852.html