标签:error ack put back pen 长度 lib 测试文件 1.4
利用C++语言实现BP神经网络, 并利用BP神经网络解决螨虫分类问题:
蠓虫分类问题:对两种蠓虫(A与B)进行鉴别,依据的资料是触角和翅膀的长度,已知了9支Af和6支Apf 的数据如下:A: (1.24,1.27), (1.36,1.74),(1.38,1.64) , (1.38,1.82) , (1.38,1.90) , (1.40,1.70) , (1.48,1.82) , (1.54,1.82) ,(1.56,2.08).B: (1.14,1.82), (1.18,1.96), (1.20,1.86), (1.26,2.00), (1.28,2.00),(1.30,1.96).
要求:(1)阐述BP神经网络的结构构成及数学原理;
(2)利用C++实现BP神经网络;
(3)利用BP神经网络实现螨虫分类.
头文件necessary.h:
1 #include<iostream>
2 #include<fstream>
3 #include<iomanip>
4 #include<stdlib.h>
5 #include<math.h>
6 #include<time.h>
7
8 #define SampleCount 15 //学习样本个数
9 #define INnum 2 //输入层神经元数目
10 #define HN 15//隐层神经元数目
11 #define ONnum 1 //输出层神经元数目
12
13 using namespace std;
头文件bp.h:
1 #ifndef BP_H
2 #define BP_H
3
4 #include "necessary.h"
5
6
7 class Back_propagation
8 {
9
10 public:
11 Back_propagation();
12 double W[HN][INnum]; //输入层至隐层权值
13 double V[ONnum][HN]; //隐层至输出层权值
14 double P[INnum]; //单个样本输入数据
15 double T[ONnum]; //单个样本期望输出值
16
17 double OLD_W[HN][INnum]; //保存HN-IN旧权!
18 double OLD_V[ONnum][HN]; //保存ON-HN旧权!
19 double HI[HN]; //隐层的输入
20 double OI[ONnum]; //输出层的输入
21 double hidenLayerOutput[HN]; //隐层的输出
22 double OO[ONnum]; //输出层的输出
23 double err_m[SampleCount]; //第m个样本的总误差
24 double studyRate;//学习效率效率
25 double b;//步长
26 double e_err[HN];
27 double d_err[ONnum];
28 void input_p(int m);
29 void input_t(int m);
30 void H_I_O();
31 void O_I_O();
32 void Err_Output_Hidden(int m);
33 void Err_Hidden_Input();
34 void Adjust_O_H(int m,int n);
35 void Adjust_H_I(int m,int n);
36 void saveWV();
37 struct
38 {
39 double input[INnum];
40 double teach[ONnum];
41 }Study_Data[SampleCount];
42 private:
43 };
44
45 #endif
源文件necessary.cpp:
1 #include "necessary.h"
源文件bp.cpp:
1 #include"bp.h"
2
3 Back_propagation::Back_propagation()
4 {
5
6
7 srand( (unsigned)time( NULL ) );
8
9 for( int i = 0; i < HN; i ++ )
10 {
11 for( int j = 0; j < INnum; j ++ )
12 {
13 W[i][j] = double( rand() % 100 ) / 100; //初始化输入层到隐层的权值
14 }
15 }
16 for( int ii = 0; ii < ONnum; ii ++ )
17 {
18 for( int jj = 0; jj < HN; jj ++ )
19 {
20 V[ii][jj] = double( rand() % 100 ) / 100; //初始化隐层到输出层的权值
21 }
22 }
23 }
24
25 void Back_propagation::input_p(int m)
26 {
27 for( int i = 0; i < INnum; i ++ )
28 {
29 P[i] = Study_Data[m].input[i];
30 }
31 }
32
33 void Back_propagation::input_t(int m)
34 {
35 for( int k = 0; k < ONnum; k ++ )
36 {
37 T[k] = Study_Data[m].teach[k];
38 }
39 }
40
41 void Back_propagation::H_I_O()
42 {
43 double net;
44 int i,j;
45 for( j = 0; j < HN; j ++ )
46 {
47 net = 0;
48 for( i = 0; i < INnum; i ++ )
49 {
50 net += W[j][i] * P[i];//求隐层内积
51 }
52 HI[j] = net;// - Thread_Hiden[j];//求隐层输入
53 hidenLayerOutput[j] = 1.0 / ( 1.0 + exp(-HI[j]) );//求隐层输出
54 }
55 }
56
57 void Back_propagation::O_I_O()
58 {
59 double net;
60 int k,j;
61 for( k = 0; k < ONnum; k ++ )
62 {
63 net = 0;
64 for( j = 0; j < HN; j ++ )
65 {
66 net += V[k][j] * hidenLayerOutput[j];//求输出层内积
67 }
68 OI[k] = net; //求输出层输入
69 OO[k] = 1.0 / ( 1.0 + exp(-OI[k]) );//求输出层输出
70 }
71 }
72
73 void Back_propagation::Err_Output_Hidden( int m )
74 {
75 double abs_err[ONnum];//样本误差
76 double sqr_err = 0;//临时保存误差平方
77
78 for( int k = 0; k < ONnum; k ++ )
79 {
80 abs_err[k] = T[k] - OO[k]; //求第m个样本下的第k个神经元的绝对误差
81
82 sqr_err += (abs_err[k]) * (abs_err[k]);//求第m个样本下输出层的平方误差
83
84 d_err[k] = abs_err[k] * OO[k] * (1.0-OO[k]);//d_err[k]输出层各神经元的一般化误差
85 }
86 err_m[m] = sqr_err / 2;//第m个样本下输出层的平方误差/2=第m个样本的均方误差,据ppt1.5-3
87
88 }
89
90 void Back_propagation::Err_Hidden_Input()
91 {
92 double sigma;
93 for( int j = 0; j < HN; j ++ )
94 {
95 sigma = 0.0;
96 for( int k = 0; k < ONnum; k ++ )
97 {
98 sigma += d_err[k] * V[k][j];
99 }
100
101 e_err[j] = sigma * hidenLayerOutput[j] * ( 1 - hidenLayerOutput[j] );//隐层各神经元的一般化误差
102 }
103 }
104
105 void Back_propagation::Adjust_O_H( int m,int n )
106 {
107 if( n <= 1 )
108 {
109 for( int k = 0; k < ONnum; k ++ )
110 {
111 for( int j = 0; j < HN; j ++ )
112 {
113 V[k][j] = V[k][j] + studyRate * d_err[k] * hidenLayerOutput[j];//输出层至隐层的权值调整
114 }
115 }
116 }
117 else if( n > 1 )
118 {
119 for( int k = 0; k < ONnum; k ++ )
120 {
121 for( int j = 0; j < HN; j ++ )
122 {
123 V[k][j] = V[k][j] + studyRate * d_err[k] * hidenLayerOutput[j] + b * ( V[k][j] - OLD_V[k][j] );//输出层至隐层的权值调整
124 }
125 }
126 }
127 }
128
129 void Back_propagation::Adjust_H_I( int m,int n )
130 {
131 if( n <= 1 )
132 {
133 for( int j = 0; j < HN; j ++ )
134 {
135 for ( int i = 0; i < INnum; i ++ )
136 {
137 W[j][i] = W[j][i] + studyRate * e_err[j] * P[i];//隐层至输入层的权值调整
138 }
139 }
140
141 }
142 else if( n > 1 )
143 {
144 for( int j = 0; j < HN; j ++ )
145 {
146 for( int i = 0; i < INnum; i ++ )
147 {
148 W[j][i] += studyRate * e_err[j] * P[i] + b * ( W[j][i] - OLD_W[j][i] );//隐层至输入层的权值调整
149 }
150 }
151 }
152 }
153
154 void Back_propagation::saveWV()
155 {
156 for( int i = 0; i < HN; i ++ )
157 {
158 for( int j = 0; j < INnum; j ++ )
159 {
160 OLD_W[i][j] = W[i][j];
161 }
162 }
163
164 for( int ii = 0; ii < ONnum; ii ++ )
165 {
166 for( int jj = 0; jj < HN; jj ++ )
167 {
168 OLD_V[ii][jj] = V[ii][jj];
169 }
170 }
171 }
源文件main.cpp:
1 #include "bp.h"
2
3 void saveWV( Back_propagation bp )
4 {
5 for( int i = 0; i < HN; i ++ )
6 {
7 for( int j = 0; j < INnum; j ++ )
8 {
9 bp.OLD_W[i][j] = bp.W[i][j];
10 }
11 }
12
13 for( int ii = 0; ii < ONnum; ii ++ )
14 {
15 for( int jj = 0; jj < HN; jj ++ )
16 {
17 bp.OLD_V[ii][jj] = bp.V[ii][jj];
18 }
19 }
20 }
21
22 //保存数据
23 void savequan( Back_propagation bp )
24 {
25 ofstream outW( "w.txt" );
26 ofstream outV( "v.txt" );
27
28 for( int i = 0; i < HN; i ++ )
29 {
30 for( int j = 0; j < INnum; j ++ )
31 {
32 outW << bp.W[i][j] << " ";
33 }
34 outW << "\n";
35 }
36
37 for( int ii = 0; ii < ONnum; ii ++ )
38 {
39 for( int jj = 0; jj < HN; jj ++ )
40 {
41 outV << bp.V[ii][jj] << " ";
42 }
43 outV << "\n";
44 }
45
46
47 outW.close();
48 outV.close();
49
50 }
51
52 double Err_Sum( Back_propagation bp )
53 {
54 double total_err = 0;
55 for ( int m = 0; m < SampleCount; m ++ )
56 {
57 total_err += bp.err_m[m];//每个样本的均方误差加起来就成了全局误差
58 }
59 return total_err;
60 }
61
62 int main()
63 {
64 double sum_err;
65 int study;
66 int m;
67 double check_in, check_out;
68 ifstream Train_in( "trainin.txt", ios::in );
69 ifstream Train_out( "trainout.txt", ios::in );
70
71 if( ( Train_in.fail() ) || ( Train_out.fail() ) )
72 {
73 //printf( "Error input file!\n" );
74 cerr << "Error input file!" << endl;
75 exit(0);
76 }
77
78 Back_propagation bp;
79
80 cout << "请输入学习效率: studyRate = ";
81 cin >> bp.studyRate;
82
83 cout << "\n请输入步长: b= ";
84 cin >> bp.b;
85
86 study = 0;
87 double Pre_error ; //预定误差
88 cout << "\n请输入预定误差: Pre_error = ";
89 cin >> Pre_error;
90
91 int Pre_times;
92 cout << "\n请输入预定最大学习次数:Pre_times=";
93 cin >> Pre_times;
94
95 for( m = 0; m < SampleCount; m ++ )
96 {
97 for( int i = 0; i < INnum; i ++ )
98 {
99 Train_in >> bp.Study_Data[m].input[i];
100 }
101 }
102
103 cout << endl;
104 for( m = 0; m < SampleCount; m ++ )
105 {
106 for( int k = 0; k < ONnum; k ++ )
107 {
108 Train_out >> bp.Study_Data[m].teach[k];
109 }
110 }
111
112 cout << endl;
113
114 do
115 {
116 ++ study;
117 if( study > Pre_times )
118 {
119 cout << "训练失败!" << endl;
120 break;
121 }
122
123 for ( int m = 0; m < SampleCount; m ++ )
124 {
125 bp.input_p(m); //输入第m个学习样本 (2)
126 bp.input_t(m);//输入第m个样本的教师信号 (3)
127 bp.H_I_O(); //第m个学习样本隐层各单元输入、输出值 (4)
128 bp.O_I_O();
129 bp.Err_Output_Hidden(m); //第m个学习样本输出层至隐层一般化误差 (6)
130 bp.Err_Hidden_Input(); //第m个学习样本隐层至输入层一般化误差 (7)
131 bp.Adjust_O_H(m,study);
132 bp.Adjust_H_I(m,study);
133 if( m == 0 )
134 {
135 cout << bp.V[0][0] << " " << bp.V[0][1] << endl;
136 }
137 }//全部样本训练完毕
138 sum_err = Err_Sum(bp); //全部样本全局误差计算 (10)
139 bp.saveWV();
140 }while( sum_err > Pre_error );
141
142 if( ( study <= Pre_times ) & ( sum_err < Pre_error ) )
143 {
144 cout << "训练结束!" << endl;
145 cout << "你已经学习了 " << study << "次" << endl;
146 }
147 double net;
148 int k, j;
149 while(1)
150 {
151 printf( "请输入蠓虫的触角及翅膀的长度:" );
152 cin >> check_in;
153 cin >> check_out;
154 bp.P[0] = check_in;
155 bp.P[1] = check_out;
156 bp.H_I_O();
157 for ( k = 0; k < ONnum; k ++ )
158 {
159 net = 0;
160 for( j = 0; j < HN; j ++ )
161 {
162 net += bp.V[k][j] * bp.hidenLayerOutput[j];//求输出层内积
163 }
164 bp.OI[k] = net; //求输出层输入
165 bp.OO[k] = 1.0 / ( 1.0 + exp(-bp.OI[k]) );//求输出层输出
166 }
167 if( bp.OO[0] > 0.5 )
168 {
169 printf( "该蠓虫是af!\n" );
170 }
171 else if( bp.OO[0] >= 0 )
172 {
173 printf( "该蠓虫是apf!\n" );
174 }
175 }
176 return 0;
177 }
文件trainin.txt:
1 1.24 1.27 2 1.36 1.74 3 1.38 1.64 4 1.38 1.82 5 1.38 1.90 6 1.40 1.70 7 1.48 1.82 8 1.54 1.82 9 1.56 2.08 10 1.14 1.82 11 1.18 1.96 12 1.20 1.86 13 1.26 2.00 14 1.28 2.00 15 1.30 1.96
文件trainout.txt:
1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 0 11 0 12 0 13 0 14 0 15 0
图1 输入数据
图2 测试算法“学习”结果
题目里面既有“螨(音mǎn)虫”,也有“蠓(音měng)虫”,程序里面用的是“蠓虫”。
“程序设计与算法训练”课程设计:“BP神经网络的实现”(C++类封装实现)
标签:error ack put back pen 长度 lib 测试文件 1.4
原文地址:https://www.cnblogs.com/25th-engineer/p/10352454.html