标签:man format ade 地址 创建 [] 符号 进一步 学习
本文主要是以 C# 为例介绍 .NET 中的三种指针类型(本文不包含对于函数指针的介绍):对象引用、非托管指针 、托管指针。
学习是一个不断深化理解的过程,借此博客,把自己关于 .NET 中指针相关的理解和大家一起讨论一下,若有表述不清楚,理解不正确之处,还请大家批评指正。
开始话题之前,我们不妨先对一些概念作出定义。
变量:给存储单元指定名称、即定义内存单元的名称或者说是标识。
指针:一种特殊的变量、其存储的是值的地址而不是值本身。
对于对象引用,大家都不会陌生。
与值类型变量直接包含值不同,引用类型变量存储的是数据的存储位置(托管堆内存地址)。
对象引用是在托管堆上分配的对象的开始位置指针。访问数据时,运行时要先从变量中读取内存位置(隐式间接寻址),再跳转到包含数据的内存位置,这一切都是隐藏在CLR背后发生的事情,我们在使用引用类型的时候,并不需要关心其背后的实现。
很多朋友,包括我,在初期学习的时候,可能都会有这么一个认知误区:"对象在C#中是按引用传递的"。
对于引用传递,借鉴《深入理解C#》中话,我们需要记住这一点:
假如以引用传递的方式来传送一个变量,那么调用的方法可以通过更改其参数值,来改变调用者的变量值。
例如下面这么一个例子:
static void Main(string[] args)
{
Foo foo = new Foo
{
Name = "A"
};
Test(foo);
Console.WriteLine(foo.Name); // 输出B
}
static void Test(Foo obj)
{
obj.Name = "B";
obj = new Foo
{
Name = "C"
};
}
按照引用传递的定义,上述代码的结果应该是 C,但实际输出的是 B。
因为 C# 默认是按值传递的,在将Main函数中的 foo 变量传入Test函数时,会将它所包含的值(对象引用)复制给变量obj。所以可以通过obj变量修改原来的实例成员,这仅仅是由于引用类型的特性导致的,并不是所谓的引用传递。因为如果将obj变量指向一个新的实例,并不会影响到foo变量,它们两者是完全独立的。
只要对上述代码做一个小修改,就能顺利地打印出 C,也就是通过大家习惯的 ref 关键词。
static void Main(string[] args)
{
Foo foo = new Foo
{
Name = "A"
};
Test(ref foo);
Console.WriteLine(foo.Name); // 输出C
}
static void Test(ref Foo obj)
{
obj.Name = "B";
obj = new Foo
{
Name = "C"
};
}
在C#中,如果我们想要定义一个引用传递的方法,我们需要通过给方法参数加上 ref 或者 out 关键词。
同时C#也允许我们通过 unsafe 关键词编写不安全的代码。那么这两者到底有什么区别呢。
以以下C#代码为例:
static unsafe void Main(string[] args)
{
int a, b;
Method1(&a); // 使用非托管指针
Method2(out b); // 使用out关键词
Console.WriteLine($"a:{a},b:{b}"); // a:1,b:2
}
static unsafe void Method1(int* num)
{
*num = 1;
}
static void Method2(out int b)
{
b = 2;
}
接下来,我们通过查看生成的IL的代码来分析一下这两者之间的区别。
.assembly extern mscorlib {}
.assembly ‘App‘ {}
.class private auto ansi beforefieldinit
PointerDemo.Program
extends [mscorlib]System.Object
{
.method private hidebysig static void
Main(
string[] args
) cil managed
{
.entrypoint
.maxstack 3
.locals init (
[0] int32 a,
[1] int32 b
)
// [8 9 - 8 10]
IL_0000: nop
// [10 13 - 10 25]
IL_0001: ldloca.s a
IL_0003: conv.u
IL_0004: call void PointerDemo.Program::Method1(int32*)
IL_0009: nop
// [11 13 - 11 28]
IL_000a: ldloca.s b
IL_000c: call void PointerDemo.Program::Method2(int32&)
IL_0011: nop
// [13 13 - 13 47]
IL_0012: ldstr "a:{0},b:{1}"
IL_0017: ldloc.0 // a
IL_0018: box [mscorlib]System.Int32
IL_001d: ldloc.1 // b
IL_001e: box [mscorlib]System.Int32
IL_0023: call string [mscorlib]System.String::Format(string, object, object)
IL_0028: call void [mscorlib]System.Console::WriteLine(string)
IL_002d: nop
// [14 9 - 14 10]
IL_002e: ret
} // end of method Program::Main
.method private hidebysig static void
Method1(
int32* num
) cil managed
{
.maxstack 8
// [17 9 - 17 10]
IL_0000: nop
// [18 13 - 18 22]
IL_0001: ldarg.0 // num
IL_0002: ldc.i4.1
IL_0003: stind.i4
// [19 9 - 19 10]
IL_0004: ret
} // end of method Program::Method1
.method private hidebysig static void
Method2(
[out] int32& b
) cil managed
{
.maxstack 8
// [22 9 - 22 10]
IL_0000: nop
// [23 13 - 23 19]
IL_0001: ldarg.0 // b
IL_0002: ldc.i4.2
IL_0003: stind.i4
// [24 9 - 24 10]
IL_0004: ret
} // end of method Program::Method2
.method public hidebysig specialname rtspecialname instance void
.ctor() cil managed
{
.maxstack 8
IL_0000: ldarg.0 // this
IL_0001: call instance void [mscorlib]System.Object::.ctor()
IL_0006: nop
IL_0007: ret
} // end of method Program::.ctor
} // end of class PointerDemo.Program
可以看到
静态方法Method1中的参数对应的IL代码 int32* num。
静态方法Method2中的参数对应的IL代码是 [out] int32& b,其中[out]即使去除也不影响代码的运行,上述代码是可通过ilasm编译的完整代码,有兴趣的朋友可以自己做尝试。
通过学习《.NET探秘:MSIL权威指南》这本书,我们可以了解到很多相关的知识。
在CLR中可以定义两种类型的指针:
ILAsm符号 | 说明 |
---|---|
type* | 指向type的非托管指针 |
type& | 指向type的托管指针 |
也就是说用out/ref定义的指针类型其实对应的就是CLR中的托管指针。
非托管指针的使用主要包括
寻址运算符 &
间接寻址运算符 *
用于结构指针的成员访问运算符 ->
非托管指针的用法和C/C++基本一致,这边不一一列出,下面主要列出几个.net 中非托管指针的注意点。
我们知道一个引用类型的变量,它所存储的是托管堆上的实例的内存地址。这个内存地址记录本身也是保存在内存的某个位置。类似于我们用记事本记下了某人的联系方式,同时这条联系方式记录本身也占据了我们记事本上一定的空间,被我们写在了记事本的某个位置。
我们可以创建指向值类型变量的非托管指针,也可以创建多级非托管指针,但是不能创建指向引用类型变量(对象引用)的非托管指针。
static unsafe void Main(string[] args)
{
int num = 2;
object obj = new object();
int* pNum = # // 指向值类型变量的非托管指针,编译通过
int** ppNum = &pNum; // 二级指针,编译通过
object* pObj = &obj; // 指向引用类型变量的非托管指针,编译不通过
}
如果我们想要创建一个对象的值类型成员变量的指针,按下方的代码是无法编译通过的。
class Foo
{
public int Bar;
}
static unsafe void Main(string[] args)
{
Foo foo = new Foo();
int* p = &foo.Bar; // 编译不通过
}
因为对于生存在托管堆上的引用类型的实例而言,在一次 GC 之后,其内存位置可能会发生变动(GC的compact阶段),包含在实例内的成员变量也就随之发生了位置的移动。对于标识内存位置的指针而言,显然这样的情况是不能够被允许的。
但是我们可以通过 fixed 关键词避免 GC 时实例内存位置的移动来实现这种类型的指针的创建,如下面代码所示。
static unsafe void Main(string[] args)
{
Foo foo = new Foo();
fixed (int* p = &foo.Bar) // 编译通过
{
Console.WriteLine((int)p); // 打印内存地址
Console.WriteLine(*p); // 打印值
}
}
同理,我们也可以利用 fixed 关键词创建指向值类型数组的指针(数组是引用类型,这里指数组的元素是值类型)。
static unsafe void Main(string[] args)
{
int[] arr = { 1, 2 };
// 除去 fixed 关键词外,指向数组的非托管指针声明方式与 C/C++ 类似
fixed (int* p = arr)
{
// 指针保存的是第一个元素的内存地址
Console.WriteLine(*p); // 输出1
// 通过 +1 可以获取到第二个元素的内存地址
Console.WriteLine(*(p + 1)); // 输出2
}
}
在上文我们已经提到,我们在使用引用传递的时候使用的 ref/out 关键词其实就是创建了托管指针。
在 C#7 之前,我们只能在方法参数上见到托管指针的身影,C#7 进一步开放了托管指针的功能,使得我们能够在更多的场景下使用它们。例如和非托管指针一样,用于方法的返回值,
托管指针完全受 CLR 管理,与非托管指针相比,在 C# 中(IL对于托管指针的限制会更少)托管指针存在以下几个特点:
static void Main(string[] args)
{
var foo = new Foo{Bar = 1};
// 创建指向引用类型变量(对象引用)的托管指针
ref Foo p = ref foo;
// IL代码中通过 ldind.ref 指令间接寻址找到对象引用
Console.WriteLine(p.Bar); // 输出1
}
标签:man format ade 地址 创建 [] 符号 进一步 学习
原文地址:https://www.cnblogs.com/blurhkh/p/10357576.html