标签:ons hashset tables map 空间 同步 键值对 否支持 忽略
add(E e)
方法的时候, ArrayList 会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是O(1)。但是如果要在指定位置 i 插入和删除元素的话(add(int index, E element)
)时间复杂度就为 O(n-i)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。 ② LinkedList 采用链表存储,所以插入,删除元素时间复杂度不受元素位置的影响,都是近似 O(1)而数组为近似 O(n)。get(int index)
方法)。public interface RandomAccess {
}
查看源码我们发现实际上 RandomAccess 接口中什么都没有定义。所以,在我看来 RandomAccess 接口不过是一个标识罢了。标识什么? 标识实现这个接口的类具有随机访问功能。
在binarySearch()方法中,它要判断传入的list 是否RamdomAccess的实例,如果是,调用indexedBinarySearch()方法,如果不是,那么调用iteratorBinarySearch()方法
public static <T>
int binarySearch(List<? extends Comparable<? super T>> list, T key) {
if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
return Collections.indexedBinarySearch(list, key);
else
return Collections.iteratorBinarySearch(list, key);
}
ArraysList 实现了 RandomAccess 接口, 而 LinkedList 没有实现。为什么呢?我觉得还是和底层数据结构有关!ArraysList 底层是数组,而 LinkedList 底层是链表。数组天然支持随机访问,时间复杂度为 O(1),所以称为快速随机访问。链表需要遍历到特定位置才能访问特定位置的元素,时间复杂度为 O(n),所以不支持快速随机访问。,ArraysList 实现了 RandomAccess 接口,就表明了他具有快速随机访问功能。 RandomAccess 接口只是标识,并不是说 ArraysList 实现 RandomAccess 接口才具有快速随机访问功能的!
下面再总结一下 list 的遍历方式选择:
双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。一般我们都构造双向循环链表,如下图所示,同时下图也是LinkedList 底层使用的是双向循环链表数据结构。
Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。
Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。
JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列。HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash
判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。
所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。
JDK 1.8 HashMap 的 hash 方法源码:
JDK 1.8 的 hash方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。
static final int hash(Object key) {
int h;
// key.hashCode():返回散列值也就是hashcode
// ^ :按位异或
// >>>:无符号右移,忽略符号位,空位都以0补齐
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
对比一下 JDK1.7的 HashMap 的 hash 方法源码.
static int hash(int h) {
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。
所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。
相比于之前的版本, JDK1.8之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。
TreeMap、TreeSet以及JDK1.8之后的HashMap底层都用到了红黑树。红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。
推荐阅读:
synchronized
修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!);tableSizeFor()
方法保证,下面给出了源代码)。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。HasMap 中带有初始容量的构造函数:
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
下面这个方法保证了 HashMap 总是使用2的幂作为哈希表的大小。
/**
* Returns a power of two size for the given target capacity.
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀。我们上面也讲到了过了,Hash 值的范围值-2147483648到2147483647,前后加起来大概40亿的映射空间,只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个40亿长度的数组,内存是放不下的。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来要存放的位置也就是对应的数组下标。这个数组下标的计算方法是“ (n - 1) & hash
”。(n代表数组长度)。这也就解释了 HashMap 的长度为什么是2的幂次方。
这个算法应该如何设计呢?
我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。
在多线程下,进行 put 操作会导致 HashMap 死循环,原因在于 HashMap 的扩容 resize()方法。由于扩容是新建一个数组,复制原数据到数组。由于数组下标挂有链表,所以需要复制链表,但是多线程操作有可能导致环形链表。复制链表过程如下:
以下模拟2个线程同时扩容。假设,当前 HashMap 的空间为2(临界值为1),hashcode 分别为 0 和 1,在散列地址 0 处有元素 A 和 B,这时候要添加元素 C,C 经过 hash 运算,得到散列地址为 1,这时候由于超过了临界值,空间不够,需要调用 resize 方法进行扩容,那么在多线程条件下,会出现条件竞争,模拟过程如下:
线程一:读取到当前的 HashMap 情况,在准备扩容时,线程二介入
线程二:读取 HashMap,进行扩容
线程一:继续执行
这个过程为,先将 A 复制到新的 hash 表中,然后接着复制 B 到链头(A 的前边:B.next=A),本来 B.next=null,到此也就结束了(跟线程二一样的过程),但是,由于线程二扩容的原因,将 B.next=A,所以,这里继续复制A,让 A.next=B,由此,环形链表出现:B.next=A; A.next=B
注意:jdk1.8已经解决了死循环的问题。
如果你看过 HashSet 源码的话就应该知道:HashSet 底层就是基于 HashMap 实现的。(HashSet 的源码非常非常少,因为除了 clone() 方法、writeObject()方法、readObject()方法是 HashSet 自己不得不实现之外,其他方法都是直接调用 HashMap 中的方法。)
ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。
两者的对比图:
图片来源:http://www.cnblogs.com/chengxiao/p/6842045.html
HashTable:
JDK1.7的ConcurrentHashMap:
JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点
Node: 链表节点):
首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。
ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成。
Segment 实现了 ReentrantLock,所以 Segment 是一种可重入锁,扮演锁的角色。HashEntry 用于存储键值对数据。
static class Segment<K,V> extends ReentrantLock implements Serializable {
}
一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。
ConcurrentHashMap取消了Segment分段锁,采用CAS和synchronized来保证并发安全。数据结构跟HashMap1.8的结构类似,数组+链表/红黑二叉树。
synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。
标签:ons hashset tables map 空间 同步 键值对 否支持 忽略
原文地址:https://www.cnblogs.com/Draymonder/p/10362206.html