标签:变量 pytho ova val form value alpha figure mod
import matplotlib.pyplot as plt import numpy as np SAMPLE_SIZE = 100 np.random.seed() real_rand_vars = [np.random.random() for _ in range(SAMPLE_SIZE)] plt.figure() plt.hist(real_rand_vars, rwidth=0.9, color=‘blue‘) plt.xlabel(‘Number range‘) plt.ylabel(‘Count‘) plt.show()
import matplotlib.pyplot as plt import numpy as np duration = 100 mean_inc = 0.2 std_dev_inc = 1.2 x = range(duration) y = [] price_today = 0 for i in x: next_delta = np.random.normal(mean_inc, std_dev_inc) price_today += next_delta y.append(price_today) plt.figure() plt.plot(x, y) plt.xlabel(‘Time‘) plt.ylabel(‘Value‘) plt.show()
import matplotlib.pyplot as plt import numpy as np import matplotlib SAMPLE_SIZE = 1000 buckets = 100 matplotlib.rcParams.update({‘font.size‘:7}) plt.figure() # 第一个图是 [0,1) 之间分布的随机变量 plt.subplot(521) plt.xlabel(‘random.random‘) res = [np.random.random() for _ in range(1, SAMPLE_SIZE)] plt.hist(x=res, bins=buckets) # 第二个图是一个均匀分布的随机变量 plt.subplot(522) plt.xlabel(‘random.uniform‘) a = 1 b = SAMPLE_SIZE res = [np.random.uniform(a, b) for _ in range(1, SAMPLE_SIZE)] plt.hist(x=res, bins=buckets) # 第三个图是一个三角形分布 plt.subplot(523) plt.xlabel(‘random.triangular‘) low = 1 mode = 100.0 high = SAMPLE_SIZE res = [np.random.triangular(low, mode, high) for _ in range(1, SAMPLE_SIZE)] plt.hist(x=res, bins=buckets) # 第四个图是一个 beta 分布 plt.subplot(524) plt.xlabel(‘random.betavariate‘) alpha = 1 beta = 10 res = [np.random.beta(alpha, beta) for _ in range(1, SAMPLE_SIZE)] plt.hist(x=res, bins=buckets) # 第五个图是一个指数分布 plt.subplot(525) plt.xlabel(‘random.expovariate‘) lambd = 1.0 / ((SAMPLE_SIZE + 1) / 2.0) res = [np.random.exponential(lambd) for _ in range(1, SAMPLE_SIZE)] plt.hist(x=res, bins=buckets) # 第六个图是一个 gamma 分布 plt.subplot(526) plt.xlabel(‘random.gammavariate‘) alpha = 1 beta = 10 res = [np.random.gamma(alpha, beta) for _ in range(1, SAMPLE_SIZE)] plt.hist(x=res, bins=buckets) # 第七个图是一个 对数正态分布 plt.subplot(527) plt.xlabel(‘random.lognormvariate‘) mu = 1 sigma = 0.5 res = [np.random.lognormal(mu, sigma) for _ in range(1, SAMPLE_SIZE)] plt.hist(x=res, bins=buckets) # 第八个图是一个正态分布 plt.subplot(528) plt.xlabel(‘random.normalvariate‘) mu = 1 sigma = 0.5 res = [np.random.normal(mu, sigma) for _ in range(1, SAMPLE_SIZE)] plt.hist(x=res, bins=buckets) # 第九个图是一个帕累托分布 plt.subplot(529) plt.xlabel(‘random.paretovariate‘) alpha = 1 res = [np.random.pareto(alpha) for _ in range(1, SAMPLE_SIZE)] plt.hist(x=res, bins=buckets) plt.tight_layout() plt.show()
标签:变量 pytho ova val form value alpha figure mod
原文地址:https://www.cnblogs.com/0820LL/p/10363619.html