码迷,mamicode.com
首页 > 编程语言 > 详细

python 数据可视化 -- 真实数据的噪声平滑处理

时间:2019-02-12 00:30:07      阅读:991      评论:0      收藏:0      [点我收藏+]

标签:plot   div   数据可视化   xtend   bar   smooth   一个   sig   accept   

平滑数据噪声的一个简单朴素的做法是,对窗口(样本)求平均,然后仅仅绘制出给定窗口的平均值,而不是所有的数据点。

import matplotlib.pyplot as plt
import numpy as np

def moving_average(interval, window_size):
    window = np.ones(int(window_size)) / float(window_size)
    return np.convolve(interval, window, same)

t = np.linspace(start = -4, stop = 4, num = 100)
y = np.sin(t) + np.random.randn(len(t)) * 0.1
y_av = moving_average(interval = y, window_size = 10)
plt.plot(t, y, "b.-", t, y_av, "r.-")

plt.xlabel(Time)
plt.ylabel(Value)
plt.legend([original data, smooth data])
plt.grid(True)
plt.show()

技术图片

以下方法是基于信号(数据点)窗口的卷积(函数的总和)

import matplotlib.pyplot as plt
import numpy as np

WINDOWS = [flat, hanning, hamming, bartlett, blackman]

def smooth(x, window_len = 11, window = hanning):
    if x.ndim != 1:
        raise ValueError(smooth only accepts 1 dimension arrays.)
    if x.size < window_len:
        raise ValueError(Input vector needs to be bigger than window size.)
    if window_len < 3:
        return x
    if not window in WINDOWS:
        raise ValueError(Window is one of "flat", "hanning", "hamming", "bartlett", "blackman")
    s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]]
    if window == flat:
        w = np.ones(window_len, d)
    else:
        w = eval(np. + window + (window_len))
    y = np.convolve(w/w.sum(), s, mode=valid)
    return y

t = np.linspace(-4, 4, 100)
x = np.sin(t)
xn = x + np.random.randn(len(t))*0.1

y = smooth(x)
ws = 31

plt.figure()

plt.subplot(211)
plt.plot(np.ones(ws))
for w in WINDOWS[1:]:
    eval(plt.plot(np. + w + (ws)))
plt.axis([0, 30, 0, 1.1])
plt.legend(WINDOWS)
plt.title(Smoothing windows)

plt.subplot(212)
plt.plot(x)
plt.plot(xn)
for w in WINDOWS:
    plt.plot(smooth(xn, 10, w))
l = [original signal, signal with noise]
l.extend(WINDOWS)
plt.legend(l)
plt.title(Smoothed signal)

plt.show()

技术图片

中值过滤,即逐项的遍历信号,并用相邻信号项中的中值替代当前项

import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as signal

x = np.linspace(start=0, stop=1, num=101)
x[3::10] = 1.5
print(x)
plt.plot(x, k.)
plt.plot(signal.medfilt(x,3))
plt.plot(signal.medfilt(x,15))
plt.legend([original signal, length 3, length 15])
plt.show()

技术图片

 

python 数据可视化 -- 真实数据的噪声平滑处理

标签:plot   div   数据可视化   xtend   bar   smooth   一个   sig   accept   

原文地址:https://www.cnblogs.com/0820LL/p/10363635.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!