标签:资料 regress cal ctime 分类概率 裁剪 初始 class 边框
论文地址:https://arxiv.org/pdf/1406.4729.pdf
论文翻译请移步:http://www.dengfanxin.cn/?p=403
一、背景:
传统的CNN要求输入图像尺寸是固定的(因为全连接网络要求输入大小是固定的)
优点
二、SPP对R-CNN的改进:
1、使用了SPP灵活改变网络输入尺寸
2、将整张图片一次性输入CNN提取特征,将提取出的region proposal的坐标映射到feature map上,共享了计算
改进细节:
1、SPP
更多映射推理细节详见:https://blog.csdn.net/ibunny/article/details/79397399
3、训练方式
左边是训练流程,右边是测试流程,注意SPP-Net是直接用SPP池化层的输出特征作Bounding Box的回归,不像R-CNN是用Conv5的特征。
测试过程:
输入任意尺寸大小的图像,类似R-CNN,利用SS得到近2K推荐区域
通过卷积网络进行一次特征提取,得到特征图
通过ROI映射计算得到推荐区域映射到特征图的特征
输入SPP得到固定尺寸的特征
然后类似R-CNN,通过全连接层,再输入SVM得到分类概率
NMS处理
对处理后的结果,结合SPP输出特征进行边框回归
训练过程:
1、依旧是预训练好的网络,以及2K推荐区域,得到每个区域的SPP pooling层的一维特征
2、fine-tune(最大不同)
3、SVM
4、Bbox Regression
四、SPP-Net缺点
SPP-Net只解决了R-CNN卷积层计算共享的问题,但是依然存在着其他问题:
(1) 训练分为多个阶段,步骤繁琐: fine-tune+训练SVM+训练Bounding Box
(2) SPP-Net在fine-tune网络的时候固定了卷积层,只对全连接层进行微调,而对于一个新的任务,有必要对卷积层也进行fine-tune。(分类的模型提取的特征更注重高层语义,而目标检测任务除了语义信息还需要目标的位置信息)
参考资料:
https://blog.csdn.net/bryant_meng/article/details/78615353
https://www.jianshu.com/p/b2fa1df5e982
https://blog.csdn.net/ibunny/article/details/79397399
SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解
标签:资料 regress cal ctime 分类概率 裁剪 初始 class 边框
原文地址:https://www.cnblogs.com/CJT-blog/p/10417169.html