码迷,mamicode.com
首页 > Web开发 > 详细

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文理解

时间:2019-02-27 10:24:00      阅读:321      评论:0      收藏:0      [点我收藏+]

标签:分析   越界   检测   建议   mic   cti   details   建立   计算公式   

一、创新点和解决的问题

创新点

设计Region Proposal Networks【RPN】,利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search、EdgeBoxes等方法,速度上提升明显;

训练Region Proposal Networks与检测网络【Fast R-CNN】共享卷积层,大幅提高网络的检测速度。

解决的问题

继Fast R-CNN后,在CPU上实现的区域建议算法Selective Search【2s/image】、EdgeBoxes【0.2s/image】等成了物体检测速度提升上的最大瓶颈。

 

二、整体框架

技术图片

我们先整体的介绍下上图中各层主要的功能:

1)、Conv layers提取特征图:

作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取input image的feature maps,该feature maps会用于后续的RPN层和全连接层

2)、RPN(Region Proposal Networks):

    RPN网络主要用于生成region proposals,首先生成一堆Anchor box,对其进行裁剪过滤后通过softmax判断anchors属于前景(foreground)或者后景(background),即是物体or不是物体,所以这是一个二分类;同时,另一分支bounding box regression修正anchor box,形成较精确的proposal(注:这里的较精确是相对于后面全连接层的再一次box regression而言)

3)、Roi Pooling:

该层利用RPN生成的proposals和VGG16最后一层得到的feature map,得到固定大小的proposal feature map,进入到后面可利用全连接操作来进行目标识别和定位

4)、Classifier:

会将Roi Pooling层形成固定大小的feature map进行全连接操作,利用Softmax进行具体类别的分类,同时,利用L1 Loss完成bounding box regression回归操作获得物体的精确位置.

 

三、网络结构

 技术图片

现在,通过上图开始逐层分析

1)Conv layers

Faster RCNN首先是支持输入任意大小的图片的,比如上图中输入的P*Q,进入网络之前对图片进行了规整化尺度的设定,如可设定图像短边不超过600,图像长边不超过1000,我们可以假定M*N=1000*600(如果图片少于该尺寸,可以边缘补0,即图像会有黑色边缘)

①   13个conv层:kernel_size=3,pad=1,stride=1;

卷积公式:技术图片

所以,conv层不会改变图片大小(即:输入的图片大小=输出的图片大小)

②   13个relu层:激活函数,不改变图片大小

③   4个pooling层:kernel_size=2,stride=2;pooling层会让输出图片是输入图片的1/2

       经过Conv layers,图片大小变成(M/16)*(N/16),即:60*40(1000/16≈60,600/16≈40);则,Feature Map就是60*40*512-d(注:VGG16是512-d,ZF是256-d),表示特征图的大小为60*40,数量为512

 

2)RPN(Region Proposal Networks):

为了进一步更清楚的看懂RPN的工作原理,将Caffe版本下的网络图贴出来,对照网络图进行讲解会更清楚

技术图片

 

(2.1) rpn_cls、 rpn_bbox

Feature Map进入RPN后,先经过一次3*3的卷积,同样,特征图大小依然是60*40,数量512,这样做的目的应该是进一步集中特征信息,接着看到两个全卷积,即kernel_size=1*1,p=0,stride=1;

 技术图片

如上图中标识:

①   rpn_cls:60*40*512-d ⊕  1*1*512*18 ==> 60*40*9*2 

         逐像素对其9个Anchor box进行二分类

②   rpn_bbox:60*40*512-d ⊕  1*1*512*36==>60*40*9*4

          逐像素得到其9个Anchor box四个坐标信息(其实是偏移量,后面介绍)

  如下图所示:

  技术图片

 (2.2)、Anchors的生成规则

      前面提到经过Conv layers后,图片大小变成了原来的1/16,令feat_stride=16,在生成Anchors时,我们先定义一个base_anchor,大小为16*16的box(因为特征图(60*40)上的一个点,可以对应到原图(1000*600)上一个16*16大小的区域),源码中转化为[0,0,15,15]的数组,参数ratios=[0.5, 1, 2]scales=[8, 16, 32]

   先看[0,0,15,15],面积保持不变,长、宽比分别为[0.5, 1, 2]是产生的Anchors box

 技术图片

如果经过scales变化,即长、宽分别均为 (16*8=128)、(16*16=256)、(16*32=512),对应anchor box如图

 技术图片

综合以上两种变换,最后生成9个Anchor box

特征图大小为60*40,所以会一共生成60*40*9=21600个Anchor box

源码中,通过width:(0~60)*16,height(0~40)*16建立shift偏移量数组,再和base_ancho基准坐标数组累加,得到特征图上所有像素对应的Anchors的坐标值,是一个[216000,4]的数组

(2.3)rpn-data

这一层主要是为特征图60*40上的每个像素生成9个Anchor box,并且对生成的Anchor box进行过滤和标记,参照源码,过滤和标记规则如下:

①    去除掉超过1000*600这原图的边界的anchor box

②    如果anchor box与ground truth的IoU值最大,标记为正样本,label=1

③    如果anchor box与ground truth的IoU>0.7,标记为正样本,label=1

④    如果anchor box与ground truth的IoU<0.3,标记为负样本,label=0

     剩下的既不是正样本也不是负样本,不用于最终训练,label=-1

 

除了对anchor box进行标记外,另一件事情就是计算anchor box与ground truth之间的偏移量

   令:ground truth:标定的框也对应一个中心点位置坐标x*,y*和宽高w*,h*

    anchor box: 中心点位置坐标x_a,y_a和宽高w_a,h_a

    所以,偏移量:

    △x=(x*-x_a)/w_a   △y=(y*-y_a)/h_a 

   △w=log(w*/w_a)   △h=log(h*/h_a)

通过ground truth box与预测的anchor box之间的差异来进行学习,从而是RPN网络中的权重能够学习到预测box的能力

(2.4)rpn_loss_clsrpn_loss_bboxrpn_cls_prob

rpn_loss_cls’、‘rpn_loss_bbox’是分别对应softmax,smooth L1计算损失函数,‘rpn_cls_prob’计算概率值(可用于下一层的nms非最大值抑制操作)

(2.5)proposal

源码中,会重新生成60*40*9个anchor box,然后累加上训练好的△x, △y, △w, △h,从而得到了相较于之前更加准确的预测框region proposal,进一步对预测框进行越界剔除和使用nms非最大值抑制,剔除掉重叠的框;比如,设定IoU为0.7的阈值,即仅保留覆盖率不超过0.7的局部最大分数的box(粗筛)。最后留下大约2000个anchor,然后再取前N个box(比如300个);这样,进入到下一层ROI Pooling时region proposal大约只有300个

 

(2.6)roi_data

为了避免定义上的误解,我们将经过‘proposal’后的预测框称为region proposal(其实,RPN层的任务其实已经完成,roi_data属于为下一层准备数据)

主要作用:

①       RPN层只是来确定region proposal是否是物体(是/否),这里根据region proposal和ground truth box的最大重叠指定具体的标签(就不再是二分类问题了,参数中指定的是81类)

②       计算region proposal与ground truth boxes的偏移量,计算方法和之前的偏移量计算公式相同

经过这一步后的数据输入到ROI Pooling层进行进一步的分类和定位.

 

剩下的就是Fast R-CNN了。

 

参考:

https://www.cnblogs.com/wangyong/p/8513563.html

https://blog.csdn.net/WoPawn/article/details/52223282

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文理解

标签:分析   越界   检测   建议   mic   cti   details   建立   计算公式   

原文地址:https://www.cnblogs.com/CJT-blog/p/10422158.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!