标签:解析 自动提交 get rap except sleep 缓存 hadoop 24*
ctrl+H
new 它的实现类
ctrl+r替换
格式化ctrl+alt+l
ctrl+f
ctrl+alt+v
替换
< "
< <
> >
创建生产者
不带回调函数的
public class CustomProducer {
public static void main(String[] args) throws InterruptedException {
Properties properties = new Properties();
//kafka地址
properties.put("bootstrap.servers", "hadoop101:9092, hadoop102:9092, hadoop103:9092");
//acks=-1
properties.put("acks", "all");
properties.put("retries", 0);
//基于大小的批处理
properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
//基于时间的批处理
properties.put("linger.ms", 1);
//客户端缓存大小
properties.put("buffer.memory", 33554432);
//k v序列化
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<String, String>(properties);
for (int i = 0; i < 9; i++){
producer.send(new ProducerRecord<String, String>("first","" + i, "Hello" + i ));
}
//Thread.sleep(1000);
producer.close(); //忘记close关了,它就是基于批处理的条件( 基于大小的批处理; 基于时间的批处理,看是否达到,没有达到就不会send;)
}
}
new producer<String, String>( "主题", 分区int, " key“, "value" )
带回调函数的producer, 每发一条消息调用一次回调函数
不管有没有发送成功
public class CustomProducerCompletion {
public static void main(String[] args) {
Properties properties = new Properties();
properties.put("bootstrap.servers", "hadoop101:9092, hadoop102:9092, hadoop103:9092");
properties.put("acks", "all");
properties.put("retries", 2);
properties.put("batch.size", 16384);
properties.put("linger.ms", 1);
properties.put("buffer.memory", 33554432);
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
//自定义分区 ProducerConfig.PARTITIONER_CLASS_CONFIG
//properties.put("partitioner.class", "com.atguigu.kafka.producer.CustomPartitioner");
//拦截器
properties.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
Arrays.asList("com.atguigu.kafka.interceptor.TimeStampInterceptor","com.atguigu.kafka.interceptor.CountInterceptor"));
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
for (int i = 0; i < 9; i++){
kafkaProducer.send(new ProducerRecord<String, String>("first", "1", "Hi" + i), new Callback() {
public void onCompletion(RecordMetadata recordMetadata, Exception e) {
if (recordMetadata != null){
System.out.println("Topic:" + recordMetadata.topic() + "\t" +
"Partition:" + recordMetadata.partition() + "\t" + "offset:" + recordMetadata.offset()
);
}
}
});
}
kafkaProducer.close();
}
}
自定义分区
指定分区重写key的规则
public class CustomPartitioner implements Partitioner {
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
return 0; //控制分区
}
public void close() {
}
/**
* 可以添加属性
* @param config
*/
public void configure(Map<String, ?> config) {
}
}
高级API
不需手动管理offset
poll 超时时间
subscribe订阅主题
可同时消费多个主题
数组-Arrays.asList->集合
//高级API
public class CustomConsumer {
public static void main(String[] args) {
Properties properties = new Properties();
//定义kafka集群地址
properties.put("bootstrap.servers", "hadoop101:9092, hadoop102:9092, hadoop103:9092");
//消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG, "kris");
//是否自动提交偏移量:(kafka集群管理)
properties.put("enable.auto.commit", "true");
//间隔多长时间提交一次offset
properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
//key,value的反序列化
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(properties);
kafkaConsumer.subscribe(Arrays.asList("first"));
while (true){
ConsumerRecords<String, String> records = kafkaConsumer.poll(100); //定义Consumer, poll拉数据
for (ConsumerRecord<String, String> record : records) {
System.out.println("Topic:" + record.topic() + "\t" +
"Partition:" + record.partition() + "\t" + "Offset:" +record.offset()
+ "\t" + "key:" + record.key() + "\t" + "value:" + record.value());
}
}
}
}
低级API
leader
offset
保存offset
消息
public class LowLevelConsumer {
public static void main(String[] args) {
//1.集群
ArrayList<String> list = new ArrayList<>();
list.add("hadoop101");
list.add("hadoop102");
list.add("hadoop103");
//2.主题
String topic = "first";
//3.分区
int partition = 2;
//4.offset
long offset = 10;
//5.获取leader
String leader = getLeader(list, topic, partition);
//6.连接leader获取数据
getData(leader, topic, partition, offset);
}
private static void getData(String leader, String topic, int partition, long offset) {
//1.创建SimpleConsumer
SimpleConsumer consumer = new SimpleConsumer(leader, 9092, 2000, 1024 * 1024 * 2, "getData");
//2.发送请求
//3.构建请求对象FetchRequestBuilder
FetchRequestBuilder builder = new FetchRequestBuilder();
FetchRequestBuilder requestBuilder = builder.addFetch(topic, partition, offset, 1024 * 1024);
FetchRequest fetchRequest = requestBuilder.build();
//4.获取响应
FetchResponse fetchResponse = consumer.fetch(fetchRequest);
//5.解析响应
ByteBufferMessageSet messageAndOffsets = fetchResponse.messageSet(topic, partition);
//6.遍历
for (MessageAndOffset messageAndOffset : messageAndOffsets) {
long message_offset = messageAndOffset.offset();
Message message = messageAndOffset.message();
//7.解析message
ByteBuffer byteBuffer = message.payload(); //payload是有效负载
byte[] bytes = new byte[byteBuffer.limit()];
byteBuffer.get(bytes);
//8.获取数据
System.out.println("offset:" + message_offset + "\t" + "value:" + new String(bytes));
}
}
private static String getLeader(ArrayList<String> list, String topic, int partition) {
//1.循环发送请求,获取leader
for (String host : list) {
//2.创建SimpleConsumer对象
SimpleConsumer consumer = new SimpleConsumer(
host,
9092,
2000,
1024*1024,
"getLeader"
);
//3.发送获取leader请求
//4.构造请求TopicMetadataRequest
TopicMetadataRequest request = new TopicMetadataRequest(Arrays.asList(topic));
//5.获取响应TopicMetadataResponse
TopicMetadataResponse response = consumer.send(request);
//6.解析响应
List<TopicMetadata> topicsMetadata = response.topicsMetadata();
//7.遍历topicsMetadata
for (TopicMetadata topicMetadata : topicsMetadata) {
List<PartitionMetadata> partitionsMetadata = topicMetadata.partitionsMetadata();
//8.遍历partitionsMetadata
for (PartitionMetadata partitionMetadata : partitionsMetadata) {
//9.判断
if (partitionMetadata.partitionId() == partition){
BrokerEndPoint endPoint = partitionMetadata.leader();
return endPoint.host();
}
}
}
}
return null;
}
}
flume-事件
flume的拦截器链:
kafka-消息
每发送一条数据调用一次onSend方法
接收数据调用回调函数之前调用onAcknoeledgement
https://blog.csdn.net/stark_summer/article/details/50144591
Kafka与Flume比较
在企业中必须要清楚流式数据采集框架flume和kafka的定位是什么:
flume:cloudera公司研发:
适合多个生产者;
适合下游数据消费者不多的情况;
适合数据安全性要求不高的操作;
适合与Hadoop生态圈对接的操作。
kafka:linkedin公司研发:
适合数据下游消费众多的情况;
适合数据安全性要求较高的操作,支持replication。
因此我们常用的一种模型是:
线上数据 --> flume --> kafka --> flume(根据情景增删该流程) --> HDFS
vim flume-kafka.conf
# define
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F -c +0 /opt/module/datas/flume.log
a1.sources.r1.shell = /bin/bash -c
# sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.bootstrap.servers = hadoop101:9092,hadoop102:9092,hadoop103:9092
a1.sinks.k1.kafka.topic = first
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
tail -F动态实时 -c 0从0行开始监控
[kris@hadoop101 flume]$ bin/flume-ng agent -c conf/ -n a1 -f job/flume-kafka.conf
[kris@hadoop101 datas]$ cat > flume.log
Hello
[kris@hadoop101 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop101:9092 --topic first
Hello
标签:解析 自动提交 get rap except sleep 缓存 hadoop 24*
原文地址:https://www.cnblogs.com/shengyang17/p/10459459.html