码迷,mamicode.com
首页 > 编程语言 > 详细

关于求已知整数数组的连续子数组的最大和的方法

时间:2019-03-09 12:57:07      阅读:182      评论:0      收藏:0      [点我收藏+]

标签:close   标记   次数   错误   cout   期望   经验   最大值   转变   

日期:2019.3.9

博客期:039 

星期六

 

  这次的标题就是题目——关于求已知整数数组的连续子数组的最大和的方法,打个比方:给予数组 { 1 , -2 , 3 , -1 , 0 , 2 } ,它的连续子数组的最大和就是取得 { 3 , -1 , 0 , 2 } 时的和 4 !就是说我们需要找到元素值和最大的子数组。我们大可以考虑几种方法:

  (1)先求出所有的子数组,再找出每一组的和,求出和的最大值 >>>>>>>(优化)>>>>>>>>求子数组的时候考虑负数的情况,并同时记录最大值

  (2)通过假设的方法,最大值一定存在于这个数组,所以先求出最大值,之后围绕最大值向两边延申使得问题得到解决>>>>>>>>>(经验证,方法错误)>>>>>>>>> { 5 , -1 , 7 , -20 , 9 } (取得11)

  (3)[个人思想方法]

    我们从输入的第一个正数开始,计算它们的和记作Tnum(正数和),直到输入的数是负数,开辟一个Fnum(负数和),记录从此之后的负数和,直到输入的下一个数是正数。此时,判断 Tnum + Fnum 的大小是否大于 0 ,[注:只有负数转正数的时候判断] ,大于的话就更新Tnum的值为Tnum + Fnum + p ( p 值为你本次输入的值) ,小于或等于的话取 Tnum 为 p 。在每一次的循环中记录 Tnum 和 p 最大值 ,也就是最后的结果了。

    [实例:{ -3 ,2 ,-1,0,3  ,3 ,-4,3 } ]

    我们从输入的第一个数开始,-3不是正数,跳过,2是正数,我们把它记录到 Tnum 中,Tnum = 2 ,之后直到输入的是负数,所以输入的 -1 是负数 ,我们把它记录到 Fnum 中,Tnum = 2 , Fnum = -1,之后输入的是 0 ,不是正数,记录到 Fnum中,Fnum = -1 + 0 = -1,再下一个输入的是 3 ,我们知道 3 是正数,所以进行判断,因为 Tnum + Fnum = 1 > 0 , 所以我们需要把 Tnum 更新成 Tnum + Fnum + p , 这样 Tnum = 2 + ( -1 ) + 3 = 4 , (如果第二个数是 1 ,我们就要把 Tnum 设成 3 了),之后继续,输入的 3 是正数,就继续 Tnum = 4 + 3 = 7 , 下一个是 -4 , 我们把 Fnum 更新成 -4 , [ 注 : Fnum 就是单纯的记录输入的两次正数之间的负数和 ],而且下一个是 3 ,我们知道 Tnum + Fnum > 0 , 所以Tnum =  7 + ( -4 ) + 3  = 6 , 最终我们得到了 p 的最大值 3 和 Tnum 的最大值 7 , 所以我们的结果就是 7 啦!

    实际结果:{ 2 , -1 , 0 , 3 , 3} 

    我的代码:  

技术图片
 1 void My_Way()
 2 {
 3     //定义长度
 4     int n;
 5     //输入长度
 6     cin>>n;
 7     //最大值
 8     int rmax = -10000;
 9     //正数总值
10     int Tnum = -10000;
11     //负数总值
12     int Fnum = 0;
13     //记录是否发生转变
14     int sis = 0;
15     //标记是第几程度
16     int attitude = 0;
17     //循环
18     for(int i = 0 ; i < n ; ++i)
19     {
20         int p;
21         cin>>p;
22         if(attitude==0)                    //---------------------------------------[寻找第一个正数]
23         {
24             if(p<=0)
25                 ;
26             else
27             {
28                 Tnum = p;
29                 attitude = 1;
30             }
31         }
32         else if(attitude==1)            //---------------------------------------[上一个数为正数]
33         {
34             if(p<0)
35             {
36                 if(sis==0)
37                 {
38                     sis = 1;
39                     Fnum += p;
40                 }
41                 else
42                     Fnum = p;
43                 attitude = -1;
44             }
45             else
46                 Tnum += p;
47 
48             if(Tnum>rmax)
49                 rmax = Tnum;
50         }
51         else                            //---------------------------------------[上一个数为负数]
52         {
53             if(p>0)
54             {
55                 attitude = 1;
56                 if(Tnum + Fnum > 0)
57                     Tnum = (Tnum + Fnum) + p;
58                 else
59                     Tnum = p;
60             }
61             else
62                 Fnum += p;
63         }
64         /*
65         cout<<"p="<<p<<endl;
66         cout<<"rmax="<<rmax<<endl;
67         cout<<"(p>rmax)="<<(p>rmax)<<endl;
68         */
69         if(p>rmax)
70             rmax = p;
71         if(Tnum>rmax)
72             rmax = Tnum;
73     }
74     cout<<rmax<<endl;
75 }
My_Way

    我的这种方法,其实还有可以优化的地方,比如对于关系的判断啊! attitude 只能取得 -1 , 0 , 1 三个值,而我们对于它的判定有以下概率问题;

    目前,我的方法空间复杂度较低(没有使用数组),时间复杂度为 O( n ) ;

  1、取1个值,没有实际意义

  2、取2个值:

    attitude的判断值 : 

    排列    0 1 -1     1 -1 0      ...

    <1> 1 1  查询3次   查询4次     ...

    <2> 1 -1  查询3次    查询4次     ...

    <3> -1 1  查询2次    查询6次     ...

    <4>-1 -1  查询2次    查询6次     ...

    对于attitude的判断次数的数学期望最小值为 2.5;

  3、取3个值

    attitude的判断值

    <1> 1 1 1    查询5次

    <2> 1 1 -1   查询5次

    <3> 1 -1 1     查询6次

    <4> 1 -1 -1         查询6次

    <5> -1 1 1     查询4次

    <6> -1 1 -1    查询4次

    <7> -1 -1 1    查询3次

    <8> -1 -1 -1   查询3次

    对于attitude的判断次数的数学期望最小值为 4.5;

   所以我写的应该是最优的判断顺序了!

  (4) 同学的宝贵方法

    

关于求已知整数数组的连续子数组的最大和的方法

标签:close   标记   次数   错误   cout   期望   经验   最大值   转变   

原文地址:https://www.cnblogs.com/onepersonwholive/p/10500200.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!