码迷,mamicode.com
首页 > 编程语言 > 详细

动态规划——DP算法(Dynamic Programing)

时间:2019-03-11 11:52:45      阅读:209      评论:0      收藏:0      [点我收藏+]

标签:style   例子   初始   turn   解决问题   简介   调用   结果   状态   

一、斐波那契数列(递归VS动态规划)

技术图片

1、斐波那契数列——递归实现(python语言)——自顶向下

递归调用是非常耗费内存的,程序虽然简洁可是算法复杂度为O(2^n),当n很大时,程序运行很慢,甚至内存爆满。

1 def fib(n):
2     #终止条件,也就是递归出口
3     if n == 0 or n == 1:
4         return 1
5     else:
6         #递归条件
7         return (fib(n-1) + fib(n - 2))

2、斐波那契数列——动态规划实现(python语言)——自底向上

动态规划——将需要重复计算的问题保存起来,不需要下次重新计算。对于斐波那契数列,算法复杂度为O(n)。

1 def dp_fib(n):
2     #初始化一个数组,用于存储记录计算的结果。
3     res = [None] * (n + 1)
4     #前两项设置为1。
5     res[0] = res[1] = 1
6     #自底向上,将计算结果存入数组内。
7     for i in range(2, (n + 1)):
8         res[i] = res[i-1] + res[i-2]
9     return res[n]

3、方法概要

   (1)构造一个公式,它表示一个问题的解是与它的子问题的解相关的公式:

     技术图片

  (2)为这些子问题做索引,以便于它们能够在表中更好的存储与检索(用数组存储)。

  (3)以自底向上的方法来填写这个表格;首先填写最小的子问题的解。

  (4)这就保证了当我们解决一个特殊的子问题时,可以利用比它更小的所有可利用的子问题的解。

总之,因为在上世纪40年代(计算机普及很少时),这些规划设计是与“列表”方法相关的,因此被称为动态规划——Dynamic Programing。

 

 二、动态规划算法——思想简介

1、DP算法思想

   (1)将待求解的问题分解称若干个子问题,并存储子问题的解而避免计算重复的子问题,并由子问题的解得到原问题的解。

   (2)动态规划算法通常用于求解具有某种最有性质的问题。

   (3)动态规划算法的基本要素:最优子结构性质和重叠子问题。

      最优子结构性质:问题的最优解包含着它的子问题的最优解。即不管前面的策略如何,此后的决策必须是基于当前状态(由上一次的决策产生)的最优决策。

      重叠子问题:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些问题被反复计算多次。对每个子问题只解一次,然后将其解保存起来,

            以后再遇到同样的问题时就可以直接引用,不必重新求解。

2、DP算法——解决问题的基本特征

   (1)动态规划一般求解最值(最优、最大、最小、最长)问题;

   (2)动态规划解决 的问题一般是离散的,可以分解的(划分阶段的)。

   (3)动态规划结局的问题必须包含最优子结构,即可以有(n-1)的最优推导出n的最优。

3、DP算法——解决问题的基本步骤

   动态规划算法的四个步骤:

    (1)刻画最优解的结构特性。(一维、二维、三维数组);

    (2)递归的定义最优解。(状态转移方程)

    (3)以自底向上的方法来计算最优解。

    (4)从计算得到的解来构造一个最优解。

 4、求解例子——求阶乘 n!

 技术图片

技术图片

 1 #递归实现求阶乘
 2 def multiply(n):
 3     if n == 0 or n == 1:
 4         return 1
 5     return n * multiply(n -1)
 6 
 7 
 8 #动态规划实现求阶乘
 9 def dp_multiply(n):
10     temp = [None] * (n + 1)
11     temp[0] = 1
12     temp[1] = 1
13     for i in range(2, n + 1):
14         temp[i] = i * temp[i - 1]
15     return temp[n]

 

动态规划——DP算法(Dynamic Programing)

标签:style   例子   初始   turn   解决问题   简介   调用   结果   状态   

原文地址:https://www.cnblogs.com/xiaoboge/p/10509619.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!