标签:允许 erro pytho www site mmm 条件 out ike
尽管asyncio应用通常作为单线程运行,不过仍被构建为并发应用。由于I/O以及其他外部事件的延迟和中断,每个协程或任务可能按一种不可预知的顺序执行。为了支持安全的并发执行,asyncio包含了threading和multiprocessing模块中的一些底层原语的实现。
锁可以用来保护对一个共享资源的访问。只有锁的持有者可以使用这个资源。如果有多个请求要的到这个锁,那么其将会阻塞,以保证一次只有一个持有者。
看一个锁的例子:
import asyncio
from functools import partial
def unlock(lock):
print("callback释放锁")
lock.release()
async def coro1(lock):
print("并行中,coro1等待锁")
async with lock:
print("coro1被锁了")
print("coro1的锁释放了")
async def coro2(lock):
print("并行中,coro2等待锁")
await lock.acquire()
print(f"当前是否被锁", lock.locked())
try:
print("coro2被锁了")
finally:
lock.release()
print("coro2的锁释放了")
async def coro3(lock):
print("并行中,coro3等待锁")
try:
print("coro3没有加锁加试图释放")
lock.release()
except RuntimeError as e:
print("触发RuntimeError的错误")
async def main(loop):
# 创建一个锁
lock = asyncio.Lock()
loop.call_later(0.1, partial(unlock, lock))
print("等待协程")
await asyncio.wait([coro1(lock), coro2(lock), coro3(lock)])
if __name__ == '__main__':
loop = asyncio.get_event_loop()
try:
loop.run_until_complete(main(loop))
finally:
loop.close()
输出结果:
通过acquire加锁
当前是否被锁 True
等待协程
并行中,coro2等待锁
并行中,coro1等待锁
callback释放锁
coro2被锁了
coro2的锁释放了
coro1被锁了
coro1的锁释放了
通过上面的代码以及结果可以得出以下结论:
如果没有使用acquire进行加锁,就试图使用release去释放,将触发RuntimeError的异常,像coro3协程一样。
import asyncio
import functools
def callback(event):
print('callback中设置event')
event.set()
async def coro1(name, event):
print(f'{name}等待事件')
await event.wait()
print(f'{name}触发')
async def coro2(name, event):
print(f'{name}等待事件')
await event.wait()
print(f'{name}触发')
async def main(loop):
event = asyncio.Event()
print(f'当前事件状态: {event.is_set()}')
loop.call_later(
0.1, functools.partial(callback, event)
)
await asyncio.wait([coro1('coro1', event), coro2('coro2', event)])
print(f'当前事件状态: {event.is_set()}')
if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()
输出
当前事件状态: False
coro2等待事件
coro1等待事件
callback中设置event
coro2触发
coro1触发
当前事件状态: True
emmmm.。。。。。发现好像和lock也没啥区别。其实区别的话就是一旦触发了事件,coro1和coro2协程就会立即启动,不需要得到事件对象上的唯一的锁了。
Condition的做法与Event类似,只不过不是通知所有的协程等待的协程,被唤醒的等待协程的数目由notify()的一个参数控制。
import asyncio
async def consumer(cond, name, second):
await asyncio.sleep(second)
async with cond:
await cond.wait()
print(f'{name}:资源可供消费者使用')
async def producer(cond):
await asyncio.sleep(2)
for n in range(1, 3):
async with cond:
print(f'唤醒消费者 {n}')
cond.notify(n=n)
await asyncio.sleep(0.1)
async def producer2(cond):
await asyncio.sleep(2)
with await cond:
print('让资源变的可用')
cond.notify_all()
async def main(loop):
condition = asyncio.Condition()
task = loop.create_task(producer(condition))
consumers = [consumer(condition, name, index)
for index, name in enumerate(('c1', 'c2'))]
await asyncio.wait(consumers)
task.cancel()
task = loop.create_task(producer2(condition))
consumers = [consumer(condition, name, index)
for index, name in enumerate(('c1', 'c2'))]
await asyncio.wait(consumers)
task.cancel()
if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()
输出内容
唤醒消费者 1
c1:资源可供消费者使用
唤醒消费者 2
c2:资源可供消费者使用
让资源变的可用
c1:资源可供消费者使用
c2:资源可供消费者使用
对上面的代码做简单的分析
使用notify方法挨个通知单个消费者
使用notify_all方法一次性的通知全部消费者
由于producer和producer2是异步的函数,所以不能使用之前call_later方法,需要用create_task把它创建成一个任务,或者asyncio.ensure_future().
asyncio.Queue为协程提供了一个先进先出的数据结构,这与线程queue.Queue或进程的multiprocess,Queue很类似。
这里直接上一个aiohtpp爬虫使用的例子
import aiohttp
import asyncio
import async_timeout
from urllib.parse import urljoin, urldefrag
root_url = "http://python.org/"
crawled_urls, url_hub = [], [root_url, f"{root_url}/sitemap.xml", f"{root_url}/robots.txt"]
headers = {
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'}
async def get_body(url):
async with aiohttp.ClientSession() as session:
try:
with async_timeout.timeout(10):
async with session.get(url, headers=headers) as response:
if response.status == 200:
html = await response.text()
return {'error': '', 'html': html}
else:
return {'error': response.status, 'html': ''}
except Exception as err:
return {'error': err, 'html': ''}
async def handle_task(task_id, work_queue):
while not work_queue.empty(): # 如果队列不为空
queue_url = await work_queue.get() # 从队列中取出一个元素
if not queue_url in crawled_urls:
crawled_urls.append(queue_url) # crawled_urls可以做一个去重操作
body = await get_body(queue_url)
if not body['error']:
for new_url in get_urls(body['html']):
if root_url in new_url and not new_url in crawled_urls:
work_queue.put_nowait(new_url)
else:
print(f"Error: {body['error']} - {queue_url}")
def remove_fragment(url):
pure_url, frag = urldefrag(url)
return pure_url
def get_urls(html):
new_urls = [url.split('"')[0] for url in str(html).replace("'", '"').split('href="')[1:]]
return [urljoin(root_url, remove_fragment(new_url)) for new_url in new_urls]
if __name__ == "__main__":
q = asyncio.Queue() # 定义一个队列
[q.put_nowait(url) for url in url_hub] # 通过put_nowait方法循环往队列添加元素
loop = asyncio.get_event_loop()
tasks = [handle_task(task_id, q) for task_id in range(3)]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
for u in crawled_urls:
print(u)
print('-' * 30)
print(len(crawled_urls))
代码中对关键的部分做了注释总结下Queue的内容:
1.通过asyncio.Queue():定义一个asyncio队列。
2.通过put_nowait可以向队列添加元素。
3.通过empty判断队列中的元素是否为空
4.get方法取出每个元素,需要注意的是要使用await。
通过并发量可以去控制协程的并发数,爬虫操作使用中使用该方法减小并发量,可以减少对服务器的压力。Semaphore运作机制可以用停车场停车来比喻,一个停车场5个停车位,第一次5辆车可以都停下,我们知道正常情况下,不能在进入第6辆了,需要有一辆开走,然后才能再来一辆,当然如果有2辆开走,那么可以再同时进来2辆,一次类推我们就知道了,整个过程的关键点是,在车数足够多的时候,整个停车场最多只能放5辆车。下面我们在看个代码进一步做一个了解。
import aiohttp
import asyncio
URL = "http://www.baidu.com"
sem = asyncio.Semaphore(5)
async def branch():
async with sem:
await fetch()
await asyncio.sleep(2)
async def fetch():
async with aiohttp.ClientSession() as session:
async with session.get(URL) as req:
status = req.status
print("状态码", status)
async def run():
await branch()
if __name__ == '__main__':
loop = asyncio.get_event_loop()
try:
tasks=[asyncio.ensure_future(run()) for _ in range(21)]
loop.run_until_complete(asyncio.wait(tasks))
finally:
loop.close()
上面代码是一个并发访问百度然后获取状态码的一个简单的例子,并发次数为20次,然后通过asyncio.Semaphore(5)指定并发量为5,通过async with sem做一个限制,然后fetch协程是整个爬虫的逻辑代码,运行上面的代码可以发现每隔2s输出5个请求结果。
其他地方的使用第一章内容讲的很详细了这里就不详细说了。
标签:允许 erro pytho www site mmm 条件 out ike
原文地址:https://www.cnblogs.com/c-x-a/p/10597811.html