标签:extc closed tag ase rand set 技术 bool put
将每个物品拆成p 和 s 再加上人排序。 然后问题就变成了, 对于一个线段(L - R),
问有多少个(li, ri)满足 L >= li && R >= ri, 这个东西可以直接树状数组套平衡树维护。
但是这个题目有个特殊性,因为排好序之后不会存在 li > L && ri > R的点, 所以可以直接
用平衡树, 或者线段树去维护这个东西。
平板电视
#include<bits/stdc++.h> #include <bits/extc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ull unsigned long long using namespace std; using namespace __gnu_pbds; const int N = 1e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 998244353; const double eps = 1e-6; const double PI = acos(-1); int n, m, tot, ans[N * 3], hs[N], cnt; int p[N], s[N], b[N], inc[N], pref[N]; struct event { int p, b, id, op, rp; bool operator < (const event& rhs) const { if(p == rhs.p) return op < rhs.op; else return p < rhs.p; } } e[N * 3]; template <class T> using Tree = tree<T, null_type, std::less<T>, rb_tree_tag,tree_order_statistics_node_update>; struct Bit { Tree<PII> T[N]; void add(int x, PII v) { for(int i = x; i <= cnt; i += i & -i) T[i].insert(v); } void del(int x, PII v) { for(int i = x; i <= cnt; i += i & -i) T[i].erase(v); } int sum(int x, int R) { int ans = 0; for(int i = x; i; i -= i & -i) ans += T[i].order_of_key(mk(R, INT_MAX)); return ans; } } bit; int getPos(int x) { return upper_bound(hs + 1, hs + 1 + cnt, x) - hs - 1; } int main() { scanf("%d%d", &n, &m); for(int i = 1; i <= n; i++) scanf("%d", &p[i]); for(int i = 1; i <= n; i++) scanf("%d", &s[i]); for(int i = 1; i <= n; i++) scanf("%d", &b[i]); for(int i = 1; i <= n; i++) { e[++tot] = event{p[i], b[i], i, 0, p[i]}; e[++tot] = event{s[i], b[i], i, 2, p[i]}; hs[++cnt] = p[i] - b[i]; } for(int i = 1; i <= m; i++) scanf("%d", &inc[i]); for(int i = 1; i <= m; i++) scanf("%d", &pref[i]); for(int i = 1; i <= m; i++) e[++tot] = event{inc[i], pref[i], n + i, 1, 0}; sort(hs + 1, hs + 1 + cnt); cnt = unique(hs + 1, hs + 1 + cnt) - hs - 1; sort(e + 1, e + 1 + tot); for(int i = 1; i <= tot; i++) { int p = e[i].p, b = e[i].b, rp = e[i].rp; if(e[i].op == 0) { bit.add(getPos(rp - b), mk(rp + b, e[i].id)); } else if(e[i].op == 1) { ans[e[i].id] = bit.sum(getPos(p - b), p + b); } else { bit.del(getPos(rp - b), mk(rp + b, e[i].id)); } } for(int i = n + 1; i <= n + m; i++) printf("%d ", ans[i]); puts(""); return 0; } /* */
treap, 为啥我的treap好慢啊啊啊。
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ull unsigned long long using namespace std; const int N = 1e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 998244353; const double eps = 1e-6; const double PI = acos(-1); mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int n, m, tot, ans[N * 3], hs[N], cnt; int p[N], s[N], b[N], inc[N], pref[N]; struct event { int p, b, id, op, rp; bool operator < (const event& rhs) const { if(p == rhs.p) return op < rhs.op; else return p < rhs.p; } } e[N * 3]; struct node { node* ch[2]; int key, fix, sz, cnt; void update() { sz = ch[0]->sz + ch[1]->sz + cnt; } } base[N * 20]; typedef node* P_node; P_node len = base; struct Treap { node nil; P_node root, null; Treap() { root = null = &nil; null->key = null->fix = inf; null->sz = null->cnt = 0; null->ch[0] = null->ch[1] = null; } P_node newnode(int tkey) { len->key = tkey; len->fix = rng(); len->ch[0] = len->ch[1] = null; len->sz = len->cnt = 1; return len++; } void rot(P_node &p, int d) { P_node k = p->ch[d ^ 1]; p->ch[d ^ 1] = k->ch[d]; k->ch[d] = p; p->update(); k->update(); p = k; } void _Insert(P_node &p, int tkey) { if(p == null) { p = newnode(tkey); } else if(p->key == tkey) { p->cnt++; } else { int d = tkey > p->key; _Insert(p->ch[d], tkey); if(p->ch[d]->fix > p->fix) { rot(p, d ^ 1); } } p->update(); } void _Delete(P_node &p, int tkey) { if(p == null) return; if(p->key == tkey) { if(p->cnt > 1) p->cnt--; else if(p->ch[0] == null) p = p->ch[1]; else if(p->ch[1] == null) p = p->ch[0]; else { int d = p->ch[0]->fix > p->ch[1]->fix; rot(p, d); _Delete(p->ch[d], tkey); } } else { _Delete(p->ch[tkey > p->key], tkey); } p->update(); } int _Kth(P_node p, int k) { if(p == null || k < 1 || k > p->sz) return 0; if(k < p->ch[0]->sz + 1) return _Kth(p->ch[0], k); if(k > p->ch[0]->sz + p->cnt) return _Kth(p->ch[1], k - p->ch[0]->sz - p->cnt); return p->key; } int _Rank(P_node p, int tkey, int res) { if(p == null) return -1; if(p->key == tkey) return p->ch[0]->sz + res + 1; if(tkey < p->key) return _Rank(p->ch[0], tkey, res); return _Rank(p->ch[1], tkey, res + p->ch[0]->sz + p->cnt); } int _Pred(P_node p, int tkey){ if(p == null) return -inf; if(tkey <= p->key) return _Pred(p->ch[0], tkey); return max(p->key, _Pred(p->ch[1], tkey)); } int _Succ(P_node p, int tkey){ if(p == null) return inf; if(tkey >= p->key) return _Succ(p->ch[1], tkey); return min(p->key, _Succ(p->ch[0], tkey)); } int _Query(P_node p, int tkey) { if(p == null) return 0; if(p->key > tkey) return _Query(p->ch[0], tkey); else if(p->key < tkey) return p->cnt + p->ch[0]->sz + _Query(p->ch[1], tkey); else return p->cnt + p->ch[0]->sz; } void Insert(int tkey){ _Insert(root,tkey); } void Delete(int tkey){ _Delete(root,tkey); } int Kth(int k){ return _Kth(root,k); } int Rank(int tkey){ return _Rank(root,tkey,0); } int Pred(int tkey){ return _Pred(root,tkey); } int Succ(int tkey){ return _Succ(root,tkey); } int Query(int tkey){ return _Query(root, tkey); } }tp; struct Bit { Treap T[N]; void add(int x, int v) { for(int i = x; i <= cnt; i += i & -i) T[i].Insert(v); } void del(int x, int v) { for(int i = x; i <= cnt; i += i & -i) T[i].Delete(v); } int sum(int x, int R) { int ans = 0; for(int i = x; i; i -= i & -i) ans += T[i].Query(R); return ans; } } bit; int getPos(int x) { return upper_bound(hs + 1, hs + 1 + cnt, x) - hs - 1; } int main() { srand(time(NULL)); scanf("%d%d", &n, &m); for(int i = 1; i <= n; i++) scanf("%d", &p[i]); for(int i = 1; i <= n; i++) scanf("%d", &s[i]); for(int i = 1; i <= n; i++) scanf("%d", &b[i]); for(int i = 1; i <= n; i++) { e[++tot] = event{p[i], b[i], i, 0, p[i]}; e[++tot] = event{s[i], b[i], i, 2, p[i]}; hs[++cnt] = p[i] - b[i]; } for(int i = 1; i <= m; i++) scanf("%d", &inc[i]); for(int i = 1; i <= m; i++) scanf("%d", &pref[i]); for(int i = 1; i <= m; i++) e[++tot] = event{inc[i], pref[i], n + i, 1, 0}; sort(hs + 1, hs + 1 + cnt); cnt = unique(hs + 1, hs + 1 + cnt) - hs - 1; sort(e + 1, e + 1 + tot); for(int i = 1; i <= tot; i++) { int p = e[i].p, b = e[i].b, rp = e[i].rp; if(e[i].op == 0) { bit.add(getPos(rp - b), rp + b); } else if(e[i].op == 1) { ans[e[i].id] = bit.sum(getPos(p - b), p + b); } else { bit.del(getPos(rp - b), rp + b); } } for(int i = n + 1; i <= n + m; i++) printf("%d ", ans[i]); puts(""); return 0; } /* */
Codeforces 1139F Dish Shopping 树状数组套平衡树 || 平衡树
标签:extc closed tag ase rand set 技术 bool put
原文地址:https://www.cnblogs.com/CJLHY/p/10612071.html