标签:strong return 快速 复杂 pre space clu 参考 ...
退役之后再写一个常数小的多项式取模吧
一句话题意:NP问题,求N!%P
吐槽:出题人太毒瘤...必须写任意模数NTT,而且加法取模还溢出...
我常数太大,粘的好久以前写的多项式取模,卡了卡常才A,大家1e3 1e4不要写vector,不要参考下面的代码
orz shadowice1984 写 \(O(\sqrt n\log n)\) 吊打我的 \(O(\sqrt n\log^2 n)\)
以下是 \(O(\sqrt n\log^2 n)\) 的题解
出门左转你谷模板区,包教不包会
出门左转你谷模板区,包教不包会
首先我们发现p是2^31-1的
你可以考虑像分段打表那样根号分块,把1~p分成 \(O(\sqrt p)\) 份
然后你求出每一份的值来,最后边角暴力就行了
那么怎么求呢
你会发现第一块是 \((1*2*...*s)\), 第二块是 \(((s+1)*(s+2)*...*(s+s))\)
第i块就是 \((s(i-1)+1)*(s(i-1)+2)*(s(i-1)+3)*(s(i-1)+s)\)
我们发现这是一个关于i的多项式,可以用分治+NTT在 \(O(\sqrt p \log^2p)\)的时间内求出这个多项式
然后你要求出第i=1...s的每一个数的值,也就是每一块数的积,你会发现是一个多项式多点求值,复杂度也是\(O(\sqrt p\log ^2p)\)
直接去隔壁模板区把多项式多点求值板子粘过来就行了
由于出题人故意卡模数,需要把FFT换成任意模数NTT...
然后你就在线A题了...
代码太丑,用vector xjb写的
#include <bits/stdc++.h>
using namespace std;
#define int long long
int n, p, s;
const int sb = 32768, sb2 = 1073741824;
const double pi = acos(-1);
int qpow(int x, int y)
{
int res = 1;
for (x %= p; y > 0; y >>= 1, x = x * (long long)x % p)
if (y & 1) res = res * (long long)x % p;
return res;
}
struct Complex { double real, imag; Complex(double r = 0, double i = 0) : real(r), imag(i) { } };
Complex a1[600000], a2[600000], b1[600000], b2[600000], a1b1[600000], ab[600000], a2b2[600000];
Complex operator+(const Complex &a, const Complex &b) { return Complex(a.real + b.real, a.imag + b.imag); }
Complex operator-(const Complex &a, const Complex &b) { return Complex(a.real - b.real, a.imag - b.imag); }
Complex operator*(const Complex &a, const Complex &b) { return Complex(a.real * b.real - a.imag * b.imag, a.real * b.imag + b.real * a.imag); }
Complex *w[22];
Complex getw(int x, int y, int falg) { return Complex(w[x][y].real, falg * w[x][y].imag); }
int *r[22];
void fftinit()
{
for (int i = 0; i < 19; i++)
{
w[i] = new Complex[1 << i], r[i] = new int[1 << i];
for (int j = 0; j < (1 << i); j++) w[i][j] = Complex(cos(pi * j / (1 << i)), sin(pi * j / (1 << i)));
r[i][0] = 0;
for (int j = 1; j < (1 << i); j++) r[i][j] = (r[i][j >> 1] >> 1) | ((j & 1) * (1 << (i - 1)));
}
}
void fft(Complex *a, int len, int loglen, int falg)
{
Complex w, t;
for (int i = 0; i < len; i++) if (r[loglen][i] < i) swap(a[i], a[r[loglen][i]]);
for (int i = 1, logi = 0; i < len; logi++, i <<= 1) for (int j = 0; j < len; j += i << 1) for (int k = 0; k < i; k++)
w = getw(logi, k, falg), t = a[j + k + i] * w, a[j + k + i] = a[j + k] - t, a[j + k] = a[j + k] + t;
if (falg == -1) for (int i = 0; i < len; i++) a[i].real /= len, a[i].imag /= len;
}
int toint(Complex x) { return (((long long)(round(x.real) + 0.5)) % p + p) % p; }
vector<int> operator*(vector<int> a, vector<int> b)
{
int len = 1, loglen = 0; int sz = a.size() + b.size() - 1; while (len < sz) len <<= 1, loglen++;
a.resize(len), b.resize(len);
vector<int> res;
for (int i = 0; i < len; i++) a1[i] = a[i] / sb, a2[i] = a[i] % sb, b1[i] = b[i] / sb, b2[i] = b[i] % sb;
fft(a1, len, loglen, 1), fft(a2, len, loglen, 1), fft(b1, len, loglen, 1), fft(b2, len, loglen, 1);
for (int i = 0; i < len; i++) a1b1[i] = a1[i] * b1[i], ab[i] = a1[i] * b2[i] + a2[i] * b1[i], a2b2[i] = a2[i] * b2[i];
fft(a1b1, len, loglen, -1), fft(ab, len, loglen, -1), fft(a2b2, len, loglen, -1);
for (int i = 0; i < len; i++)
res.push_back(((toint(a1b1[i]) * (long long)sb2 % p + toint(ab[i]) * (long long)sb % p) % p + toint(a2b2[i])) % p);
res.resize(sz);
return res;
}
vector<int> operator+(vector<int> a, vector<int> b)
{
vector<int> res; res.resize(max(a.size(), b.size()));
a.resize(res.size()); b.resize(res.size());
for (int i = 0; i < (int)res.size(); i++) res[i] = (a[i] + b[i]) % p;
return res;
}
vector<int> operator-(vector<int> a, vector<int> b)
{
vector<int> res; res.resize(max(a.size(), b.size()));
a.resize(res.size()); b.resize(res.size());
for (int i = 0; i < (int)res.size(); i++) res[i] = ((a[i] - b[i]) % p + p) % p;
return res;
}
vector<int> poly_inv(vector<int> a)
{
if (a.size() == 1) { a[0] = qpow(a[0], p - 2); return a; }
int n = a.size(), newsz = (n + 1) >> 1;
vector<int> b(a); b.resize(newsz); b = poly_inv(b);
vector<int> c(a * b);
for (int &i: c) i = (p - i) % p;
c[0] = (c[0] + 2) % p; a = c * b; a.resize(n); return a;
}
// vector<int> poly_r(vector<int> a) { reverse(a.begin(), a.end()); return a; }
void div(vector<int> f, vector<int> g, vector<int> &q, vector<int> &r)
{
int n = f.size() - 1, m = g.size() - 1;
vector<int> gr = g; reverse(gr.begin(), gr.end());
gr.resize(n - m + 1);
q = f;
reverse(q.begin(), q.end());
q = q * poly_inv(gr);
q.resize(n - m + 1);
reverse(q.begin(), q.end());
r = f - g * q;
r.resize(m);
// vector<int> gq = g * q;
// r.resize(m);
// gq.resize(m);
// f.resize(m);
// for (int i = 0; i < m; i++)
// r[i] = ((f[i] - gq[i]) % p + p) % p;
}
vector<int> zz[200010];
int res[100010];
vector<int> fuck(int l, int r)
{
if (l == r) { vector<int> res; res.push_back(l), res.push_back(s); return res; }
int mid = (l + r) / 2;
return fuck(l, mid) * fuck(mid + 1, r);
}
void prework(int x, int cl, int cr)
{
if (cl == cr)
{
zz[x].push_back((p - cl) % p), zz[x].push_back(1);
return;
}
int mid = (cl + cr) / 2;
prework(x * 2, cl, mid), prework(x * 2 + 1, mid + 1, cr);
zz[x] = zz[x * 2] * zz[x * 2 + 1];
}
void work(int x, int cl, int cr, vector<int> poly)
{
if (cr - cl <= 400)
{
int sb = poly.size();
for (int t = cl; t <= cr; t++)
{
int tmp = 1;
for (int i = 0; i < sb; i++)
res[t] = (res[t] + tmp * (long long)poly[i] % p) % p, tmp = tmp * (long long)t % p;
}
return;
}
vector<int> tmp, rel, rer;
div(poly, zz[x * 2], tmp, rel);
div(poly, zz[x * 2 + 1], tmp, rer);
int mid = (cl + cr) / 2;
work(x * 2, cl, mid, rel), work(x * 2 + 1, mid + 1, cr, rer);
}
signed main()
{
fftinit();
scanf("%lld%lld", &n, &p);
// n = 998244353, p = 2147483647;
s = sqrt(p) + 1;
vector<int> poly = fuck(1, s);
prework(1, 0, s);
// printf("prework ok\n");
work(1, 0, s, poly);
// printf("work ok\n");
int ans = 1;
for (int i = n / s * s + 1; i <= n; i++) ans = ans * (long long)i % p;
for (int i = 0; i < n / s; i++) ans = ans * (long long)res[i] % p;
printf("%lld\n", ans);
return 0; //拜拜程序~
}
标签:strong return 快速 复杂 pre space clu 参考 ...
原文地址:https://www.cnblogs.com/oier/p/10652775.html