码迷,mamicode.com
首页 > 编程语言 > 详细

KNN算法网格搜索最优参数

时间:2019-04-07 15:42:43      阅读:218      评论:0      收藏:0      [点我收藏+]

标签:就是   grid   fit   knn算法   测试   最优   numpy   执行   select   

主要用到 sklearn.model_selection包下的GridSearchCV类。

总共分为几步:

         a.创建训练集和测试集

      b.创建最优参数字典

      c.构建GridSearchCV对象

      d.进行数据训练

      e.得出最优超参数

a.创建训练集和测试集

import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV

digits = datasets.load_digits()

x = digits.data
y = digits.target

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=666)

 

 b.创建最优参数字典

param_digits =[
    {
        ‘weights‘:[‘uniform‘],
        ‘n_neighbors‘:[i for i in range(1,11)]
    },
    {
        ‘weights‘:[‘distance‘],
        ‘n_neighbors‘:[i for i in range(1,6)],
        ‘p‘:[i for i in range(1,6)]
    }
]

 c.构建GridSearchCV对象

knn_grid = KNeighborsClassifier()

grid_search = GridSearchCV(knn_grid,param_digits,n_jobs=-1,verbose=2)#n_job指的是所用的核数,也就是多线程执行,当等于-1时,也就是等于你的计算机的核数,verbose越大,打印的信息越详细

 d.进行数据训练

grid_search.fit(x_train,y_train)

e.得出最优超参数 

param = grid_search.best_params_

print(param)

 

KNN算法网格搜索最优参数

标签:就是   grid   fit   knn算法   测试   最优   numpy   执行   select   

原文地址:https://www.cnblogs.com/lyr999736/p/10665572.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!