码迷,mamicode.com
首页 > 编程语言 > 详细

力扣算法题—072编辑距离

时间:2019-04-14 15:47:04      阅读:222      评论:0      收藏:0      [点我收藏+]

标签:方法   turn   经验   execution   二维数组   lse   有一个   动态   word   

给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  1. 插入一个字符
  2. 删除一个字符
  3. 替换一个字符

示例 1:

输入: word1 = "horse", word2 = "ros"
输出: 3
解释: 
horse -> rorse (将 ‘h‘ 替换为 ‘r‘)
rorse -> rose (删除 ‘r‘)
rose -> ros (删除 ‘e‘)

示例 2:

输入: word1 = "intention", word2 = "execution"
输出: 5
解释: 
intention -> inention (删除 ‘t‘)
inention -> enention (将 ‘i‘ 替换为 ‘e‘)
enention -> exention (将 ‘n‘ 替换为 ‘x‘)
exention -> exection (将 ‘n‘ 替换为 ‘c‘)
exection -> execution (插入 ‘u‘)


 1 #include "_000库函数.h"
 2 
 3 
 4 //不知道从何下手
 5 //参考博客答案
 6 
 7 //要尝试三种操作,因为谁也不知道当前的操作会对后面产生什么样的影响,
 8 //那么对于当前比较的两个字符 word1[i] 和 word2[j],若二者相同,一切好说,
 9 //直接跳到下一个位置。若不相同,有三种处理方法,首先是直接插入一个 word2[j],那么 word2[j] 
10 //位置的字符就跳过了,接着比较 word1[i] 和 word2[j + 1] 即可。
11 //第二个种方法是删除,即将 word1[i] 字符直接删掉,接着比较 word1[i + 1] 和 word2[j] 即可。
12 //第三种则是将 word1[i] 修改为 word2[j],接着比较 word1[i + 1] 和 word[j + 1] 即可。
13 //分析到这里,我们可以直接写出递归的代码,但是很可惜会 Time Limited Exceed,
14 //所以我们必须要优化事件复杂度,需要去掉大量的重复计算,
15 //这里我们使用记忆数组 memo 来保存计算过的状态,从而可以通过OJ,
16 //注意这里的 insertCnt,deleteCnt,replaceCnt 仅仅是表示当前对应的位置分别采用了插入,删除,和替换操作,
17 //整体返回的最小距离,后面位置的还是会调用递归返回最小的,参见代码如下:
18 class Solution {
19 public:
20     int minDistance(string word1, string word2) {
21         int m = word1.size(), n = word2.size();
22         vector<vector<int>> memo(m, vector<int>(n));
23         return helper(word1, 0, word2, 0, memo);
24     }
25     int helper(string& word1, int i, string& word2, int j, vector<vector<int>>& memo) {
26         if (i == word1.size()) return (int)word2.size() - j;
27         if (j == word2.size()) return (int)word1.size() - i;
28         if (memo[i][j] > 0) return memo[i][j];
29         int res = 0;
30         if (word1[i] == word2[j]) {
31             return helper(word1, i + 1, word2, j + 1, memo);
32         }
33         else {
34             int insertCnt = helper(word1, i, word2, j + 1, memo);
35             int deleteCnt = helper(word1, i + 1, word2, j, memo);
36             int replaceCnt = helper(word1, i + 1, word2, j + 1, memo);
37             res = min(insertCnt, min(deleteCnt, replaceCnt)) + 1;
38         }
39         return memo[i][j] = res;
40     }
41 };
42 
43 //根据以往的经验,对于字符串相关的题目且求极值的问题,
44 //十有八九都是用动态规划Dynamic Programming来解,这道题也不例外。
45 //其实解法一的递归加记忆数组的方法也可以看作是DP的递归写法。
46 //这里我们需要维护一个二维的数组dp,其大小为 mxn,m和n分别为 word1 和word2 的长度。
47 //dp[i][j] 表示从 word1 的前i个字符转换到 word2 的前j个字符所需要的步骤。那
48 //我们可以先给这个二维数组dp的第一行第一列赋值,这个很简单,因为第一行和第一列对应的总有一个字符串是空串,
49 //于是转换步骤完全是另一个字符串的长度。跟以往的DP题目类似,难点还是在于找出状态转移方程,
50 //我们可以举个例子来看,比如word1是“bbc",word2是”abcd“,那么我们可以得到dp数组如下:
51 
52 
53 //Ø a b c d
54 //Ø 0 1 2 3 4
55 //b 1 1 1 2 3
56 //b 2 2 1 2 3
57 //c 3 3 2 1 2
58 //
59 //
60 //我们通过观察可以发现,当word1[i] == word2[j]时,dp[i][j] = dp[i - 1][j - 1],
61 //其他情况时,dp[i][j]是其左,左上,上的三个值中的最小值加1,其实这里的左,上,和左上,
62 //分别对应的增加,删除,修改操作,具体可以参见解法一种的讲解部分,那么可以得到状态转移方程为:
63 //
64 //if word1[i - 1] == word2[j - 1]
65 //    dp[i][j] = dp[i - 1][j - 1]                                                                   
66 //else
67 //    min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1            
68 //
69 //
70 class Solution {
71 public:
72     int minDistance(string word1, string word2) {
73         int m = word1.size(), n = word2.size();
74         vector<vector<int>> dp(m + 1, vector<int>(n + 1));
75         for (int i = 0; i <= m; ++i) dp[i][0] = i;
76         for (int i = 0; i <= n; ++i) dp[0][i] = i;
77         for (int i = 1; i <= m; ++i) {
78             for (int j = 1; j <= n; ++j) {
79                 if (word1[i - 1] == word2[j - 1]) {
80                     dp[i][j] = dp[i - 1][j - 1];
81                 }
82                 else {
83                     dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
84                 }
85             }
86         }
87         return dp[m][n];
88     }
89 };

 

力扣算法题—072编辑距离

标签:方法   turn   经验   execution   二维数组   lse   有一个   动态   word   

原文地址:https://www.cnblogs.com/zzw1024/p/10705319.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!