标签:scanf ems operator cstring ios ... int() scan struct
Matrix Power Series
r时间限制: 1 Sec 内存限制: 512 MB
题目描述
给定矩阵A,求矩阵S=A^1+A^2+……+A^k,输出矩阵,S矩阵中每个元都要模m。数据范围: n (n ≤ 30) , k (k ≤ 109) ,m (m < 104)
输入
输入三个正整数n,k,m输出
输出矩阵S mod m样例输入
2 2 4
0 1
1 1
样例输出
1 2
2 3
这道题不多说,可以得出加速矩阵(E为单位矩阵,也就是形为\(\begin{bmatrix}1&0&...&0\\0&1&...&0\\... &...&...&...\\0&0& ...&1\end{bmatrix}\)的矩阵,任何矩阵乘以这个单位矩阵还是原矩阵):
\(\begin{bmatrix} A &E \\ 0 & E \end{bmatrix}\)*\(\begin{bmatrix} A &E \\ 0 & E \end{bmatrix}\)=\(\begin{bmatrix} A^{2} &E+A \\ 0 & E \end{bmatrix}\)
所以根据题目的要求,答案便是\(\begin{bmatrix} A &E \\ 0 & E \end{bmatrix}^{k+1}\)的(1,2)
主要难点是矩阵套矩阵,详见代码:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define N 35
#define P 5
#define LL long long
LL fuck,k,mod;
struct M {
int n,m,c[N][N];
M() {
n=m=fuck;
memset(c,0,sizeof(c));
}
M operator * (const M& a) {
M r;
r.n=n;r.m=a.m;
for(int i=1;i<=r.n;i++)
for(int j=1;j<=r.m;j++)
for(int k=1;k<=m;k++)
r.c[i][j]= ( r.c[i][j] + (c[i][k] * a.c[k][j] ) % mod) % mod;
return r;
}
M operator + (const M& a) {
M r;
for(int i=1;i<=r.n;i++)
for(int j=1;j<=r.m;j++)
r.c[i][j]=(c[i][j]+a.c[i][j]) %mod;
return r;
}
M operator - (const M& a) {
M r;
for(int i=1;i<=r.n;i++)
for(int j=1;j<=r.m;j++)
r.c[i][j]=r.c[i][j]+(mod+c[i][j]-a.c[i][j]) %mod;
return r;
}
void _read() {
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lld",&c[i][j]);
}
void pre() {
n=m=fuck;
for(int i=1;i<=fuck;i++)
c[i][i]=1;
}
void _print() {
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(j!=1) cout<<" ";
cout<<c[i][j];
}
if(i!=n) puts("");
}
puts("");
}
}fuckk;
struct Matrix {
LL n,m;
M c[P][P];
Matrix() {
m=2,n=2;
memset(c,0,sizeof(c));
};
Matrix operator * (const Matrix& a) {
Matrix r;
r.n=n;r.m=a.m;
for(int i=1;i<=r.n;i++)
for(int j=1;j<=r.m;j++)
for(int k=1;k<=m;k++)
r.c[i][j]=r.c[i][j] + (c[i][k] * a.c[k][j] );
return r;
}
Matrix pow(Matrix a, LL indexx) {
Matrix sum;sum.n=sum.m=2;
sum.c[1][1].pre();
sum.c[2][2].pre();
//a.c[1][2]._print();
while(indexx>0) {
if(indexx&1) sum=sum*a;
/*sum.c[1][1]._print();
sum.c[1][2]._print();
sum.c[2][1]._print();
sum.c[2][2]._print();*/
a=a*a;
//a.c[1][1]._print();
indexx/=2;
}
return sum;
}
void sub() {
c[1][2]=c[1][2]-fuckk;
}
}ans;
int main() {
cin>>fuck>>k>>mod;
M a,b;
a._read();
b.pre();
fuckk=b;
ans.c[1][1]=a;
ans.c[1][2]=ans.c[2][2]=b;
//ans.test(ans);
ans=ans.pow(ans,k+1);
//ans.c[1][2]._print();
ans.sub();
ans.c[1][2]._print();
}
C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速
标签:scanf ems operator cstring ios ... int() scan struct
原文地址:https://www.cnblogs.com/MisakaMKT/p/10716541.html